Predicting Surgical Experience After Robotic Nerve-sparing Radical Prostatectomy Simulation Using a Machine Learning–based Multimodal Analysis of Objective Performance Metrics

医学 图书馆学 艺术史 计算机科学 艺术
作者
Nathan Schuler,Lauren Shepard,Aaron Saxton,Jillian Russo,Daniel Merro Johnston,Patrick Saba,Tyler Holler,Andrea Smith,Sue Kulason,Andrew J. Yee,Ahmed Ghazi
出处
期刊:Urology Practice [Lippincott Williams & Wilkins]
卷期号:10 (5): 447-455 被引量:5
标识
DOI:10.1097/upj.0000000000000426
摘要

Machine learning methods have emerged as objective tools to evaluate operative performance in urological procedures. Our objectives were to establish machine learning-based methods for predicting surgeon caseload for nerve-sparing robot-assisted radical prostatectomy using our validated hydrogel-based simulation platform and identify potential metrics of surgical expertise.Video, robotic kinematics, and force sensor data were collected from 35 board-certified urologists at the 2022 AUA conference. Video was annotated for surgical gestures. Objective performance indicators were derived from robotic system kinematic data. Force metrics were calculated from hydrogel model integrated sensors. Data were fitted to 3 supervised machine learning models-logistic regression, support vector machine, and k-nearest neighbors-which were used to predict procedure-specific learning curve proficiency. Recursive feature elimination was used to optimize the best performing model.Logistic regression predicted caseload with the highest AUC score for 5/7 possible data combinations (force, 64%; objective performance indicators + gestures, 94%; objective performance indicators + force, 90%; gestures + force, 93%; objective performance indicators + gestures + force, 94%). Support vector machine predicted the highest AUC score for objective performance indicators (82%) and gestures (94%). Logistic regression with recursive feature elimination was the most effective model reaching 96% AUC in predicting case-specific experience. Most contributory features were identified across all model types.We have created a machine learning-based algorithm utilizing a novel combination of objective performance indicators, gesture analysis, and integrated force metrics to predict surgical experience, capable of discriminating between surgeons with low or high robot-assisted radical prostatectomy caseload with 96% AUC in a standardized, simulation-based environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yymm完成签到,获得积分10
刚刚
klandcy完成签到,获得积分10
刚刚
xc发布了新的文献求助10
2秒前
yyy发布了新的文献求助10
3秒前
Ricky发布了新的文献求助10
4秒前
Nancy发布了新的文献求助10
4秒前
mmm4完成签到,获得积分10
7秒前
我要向阳而生完成签到 ,获得积分10
11秒前
dpiner应助bc采纳,获得350
12秒前
仁爱水之完成签到 ,获得积分10
13秒前
无奈天亦完成签到,获得积分10
17秒前
17秒前
17秒前
18秒前
Ricky完成签到,获得积分10
18秒前
HE完成签到 ,获得积分10
21秒前
study发布了新的文献求助10
21秒前
21秒前
bc应助文件撤销了驳回
21秒前
ardoroso发布了新的文献求助10
22秒前
小二郎应助KIE采纳,获得10
23秒前
啊啊哈哈哈完成签到 ,获得积分10
23秒前
rr发布了新的文献求助10
26秒前
devilito完成签到,获得积分10
27秒前
科研通AI5应助活力的尔蓉采纳,获得10
28秒前
亚亚完成签到 ,获得积分10
28秒前
29秒前
火星上送终完成签到,获得积分10
29秒前
搜集达人应助devilito采纳,获得10
30秒前
小马甲应助无心的无施采纳,获得10
31秒前
勤恳冰彤完成签到 ,获得积分10
37秒前
ZZ完成签到 ,获得积分10
37秒前
桐桐应助ksxx采纳,获得10
38秒前
科研通AI5应助活力的尔蓉采纳,获得10
40秒前
小太阳完成签到,获得积分10
40秒前
42秒前
42秒前
科研通AI2S应助xzy998采纳,获得10
44秒前
kk发布了新的文献求助10
46秒前
满怀完成签到,获得积分10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778761
求助须知:如何正确求助?哪些是违规求助? 3324313
关于积分的说明 10217843
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798544
科研通“疑难数据库(出版商)”最低求助积分说明 758401