Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design

计算机科学 药物发现 药物开发 制药工业 风险分析(工程) 人工智能 药品 数据科学 医学 药理学 生物信息学 生物
作者
Lalitkumar K. Vora,Amol D. Gholap,Keshava Jetha,Thakur Raghu Raj Singh,Hetvi K. Solanki,Vivek P. Chavda
出处
期刊:Pharmaceutics [Multidisciplinary Digital Publishing Institute]
卷期号:15 (7): 1916-1916 被引量:406
标识
DOI:10.3390/pharmaceutics15071916
摘要

Artificial intelligence (AI) has emerged as a powerful tool that harnesses anthropomorphic knowledge and provides expedited solutions to complex challenges. Remarkable advancements in AI technology and machine learning present a transformative opportunity in the drug discovery, formulation, and testing of pharmaceutical dosage forms. By utilizing AI algorithms that analyze extensive biological data, including genomics and proteomics, researchers can identify disease-associated targets and predict their interactions with potential drug candidates. This enables a more efficient and targeted approach to drug discovery, thereby increasing the likelihood of successful drug approvals. Furthermore, AI can contribute to reducing development costs by optimizing research and development processes. Machine learning algorithms assist in experimental design and can predict the pharmacokinetics and toxicity of drug candidates. This capability enables the prioritization and optimization of lead compounds, reducing the need for extensive and costly animal testing. Personalized medicine approaches can be facilitated through AI algorithms that analyze real-world patient data, leading to more effective treatment outcomes and improved patient adherence. This comprehensive review explores the wide-ranging applications of AI in drug discovery, drug delivery dosage form designs, process optimization, testing, and pharmacokinetics/pharmacodynamics (PK/PD) studies. This review provides an overview of various AI-based approaches utilized in pharmaceutical technology, highlighting their benefits and drawbacks. Nevertheless, the continued investment in and exploration of AI in the pharmaceutical industry offer exciting prospects for enhancing drug development processes and patient care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡卡罗特完成签到 ,获得积分10
刚刚
小可爱发布了新的文献求助10
刚刚
所所应助害羞傲薇采纳,获得10
1秒前
酷波er应助小伙伴采纳,获得10
2秒前
hx发布了新的文献求助10
2秒前
4秒前
善良的剑通应助yyl采纳,获得10
4秒前
AURORA完成签到,获得积分10
5秒前
霸气安筠完成签到,获得积分10
5秒前
谢谢谢谢谢m完成签到,获得积分10
5秒前
科研通AI2S应助可爱山彤采纳,获得10
6秒前
科研通AI5应助wwwww采纳,获得10
6秒前
大方小松鼠完成签到,获得积分10
7秒前
7秒前
lgj666发布了新的文献求助10
8秒前
擦撒擦擦发布了新的文献求助10
8秒前
bc应助柚子采纳,获得20
8秒前
Ava应助小可爱采纳,获得10
8秒前
tamo完成签到,获得积分10
9秒前
依灵完成签到,获得积分10
10秒前
程翠丝完成签到,获得积分10
10秒前
Akim应助小丸子采纳,获得10
10秒前
11秒前
隔壁老王发布了新的文献求助10
11秒前
14秒前
Hello应助lgj666采纳,获得10
14秒前
科学养鸡研究员完成签到,获得积分10
14秒前
15秒前
喔喔发布了新的文献求助10
15秒前
henryhc_完成签到 ,获得积分10
17秒前
擦撒擦擦完成签到,获得积分10
18秒前
小伙伴发布了新的文献求助10
18秒前
ting发布了新的文献求助10
20秒前
JamesPei应助个性百川采纳,获得10
20秒前
21秒前
22秒前
23秒前
爱学习的悦悦子完成签到 ,获得积分10
23秒前
24秒前
24秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802384
求助须知:如何正确求助?哪些是违规求助? 3348043
关于积分的说明 10336044
捐赠科研通 3063943
什么是DOI,文献DOI怎么找? 1682320
邀请新用户注册赠送积分活动 808035
科研通“疑难数据库(出版商)”最低求助积分说明 763997