Multi-omics data integration methods and their applications in psychiatric disorders

组学 计算机科学 转化研究 生物标志物发现 数据科学 医学 蛋白质组学 生物信息学 生物 生物化学 基因 病理
作者
Anita Sathyanarayanan,Tamara T. Mueller,Mohammad Ali Moni,Katja Schueler,Bernhard T. Baune,Píetro Lió,Divya Mehta,Bernhard T. Baune,Mara Dierssen,Bjarke Ebert,Chiara Fabbri,Paolo Fusar‐Poli,Massimo Gennarelli,Catherine J. Harmer,Oliver Howes,Joost Janzing,Píetro Lió,Eduard Maron,Divya Mehta,Alessandra Minelli
出处
期刊:European Neuropsychopharmacology [Elsevier BV]
卷期号:69: 26-46 被引量:50
标识
DOI:10.1016/j.euroneuro.2023.01.001
摘要

To study mental illness and health, in the past researchers have often broken down their complexity into individual subsystems (e.g., genomics, transcriptomics, proteomics, clinical data) and explored the components independently. Technological advancements and decreasing costs of high throughput sequencing has led to an unprecedented increase in data generation. Furthermore, over the years it has become increasingly clear that these subsystems do not act in isolation but instead interact with each other to drive mental illness and health. Consequently, individual subsystems are now analysed jointly to promote a holistic understanding of the underlying biological complexity of health and disease. Complementing the increasing data availability, current research is geared towards developing novel methods that can efficiently combine the information rich multi-omics data to discover biologically meaningful biomarkers for diagnosis, treatment, and prognosis. However, clinical translation of the research is still challenging. In this review, we summarise conventional and state-of-the-art statistical and machine learning approaches for discovery of biomarker, diagnosis, as well as outcome and treatment response prediction through integrating multi-omics and clinical data. In addition, we describe the role of biological model systems and in silico multi-omics model designs in clinical translation of psychiatric research from bench to bedside. Finally, we discuss the current challenges and explore the application of multi-omics integration in future psychiatric research. The review provides a structured overview and latest updates in the field of multi-omics in psychiatry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温暖听安应助咩咩采纳,获得10
2秒前
2秒前
池鱼完成签到,获得积分10
3秒前
123完成签到,获得积分10
4秒前
无花果应助BNN1203381110采纳,获得30
8秒前
田様应助研友_Z11kkZ采纳,获得10
10秒前
季末默相依完成签到,获得积分10
11秒前
12秒前
科研王完成签到 ,获得积分10
12秒前
13秒前
温暖元容发布了新的文献求助10
15秒前
321完成签到,获得积分10
16秒前
Lau完成签到,获得积分10
17秒前
科研通AI2S应助科研力力采纳,获得30
17秒前
文静的翠彤完成签到 ,获得积分10
17秒前
19秒前
所所应助DK采纳,获得10
20秒前
张益发发布了新的文献求助10
21秒前
Li完成签到,获得积分10
24秒前
温暖听安应助温暖元容采纳,获得10
28秒前
绍成完成签到 ,获得积分10
28秒前
小青椒应助五五采纳,获得20
31秒前
32秒前
32秒前
坚强幼荷完成签到,获得积分10
33秒前
白鹤完成签到,获得积分10
34秒前
生椰拿铁完成签到,获得积分10
36秒前
36秒前
研友_Z11kkZ发布了新的文献求助10
37秒前
彭于晏应助飘逸书翠采纳,获得30
38秒前
追寻夜白完成签到,获得积分10
38秒前
不配.应助令宏采纳,获得30
39秒前
在水一方应助张益发采纳,获得10
39秒前
Luna完成签到 ,获得积分10
44秒前
LuckyR完成签到,获得积分10
44秒前
火星上的幻雪完成签到,获得积分10
45秒前
46秒前
qmhx发布了新的文献求助10
47秒前
顾矜应助王聪颖采纳,获得10
47秒前
圆锥香蕉应助RONG采纳,获得20
48秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
The Rise & Fall of Classical Legal Thought 260
Die neue Frauenbewegung in Deutschland. Abschied vom kleinen Unterschied. Eine Quellensammlung 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4337367
求助须知:如何正确求助?哪些是违规求助? 3847276
关于积分的说明 12015650
捐赠科研通 3488198
什么是DOI,文献DOI怎么找? 1914497
邀请新用户注册赠送积分活动 957409
科研通“疑难数据库(出版商)”最低求助积分说明 857850