RNLFNet: Residual non-local Fourier network for undersampled MRI reconstruction

计算机科学 傅里叶变换 残余物 人工智能 背景(考古学) 卷积神经网络 频域 傅里叶域 空间频率 深度学习 航程(航空) 离散傅里叶变换(通用) 领域(数学分析) 透视图(图形) 计算机视觉 迭代重建 模式识别(心理学) 算法 傅里叶分析 短时傅里叶变换 光学 数学 物理 材料科学 数学分析 古生物学 生物 复合材料
作者
Zhou Liu,Man Zhu,Dongping Xiong,Lijun Ouyang,Yan Ouyang,Zhongze Chen,Xiaozhi Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:83: 104632-104632 被引量:1
标识
DOI:10.1016/j.bspc.2023.104632
摘要

Magnetic Resonance Imaging (MRI) has been widely applied in medical clinical diagnosis. Generally, obtaining a high spatial resolution MR image takes up to tens of minutes long. Reconstructing MR images from the undersampled k-space data has been playing a crucial role to accelerate MRI. Especially, the deep Convolutional Neural Networks (CNNs) have shown potential to significantly accelerate MRI. However, the receptive field size of CNNs is relatively small and it fails to capture the long-range dependencies. Nowadays, the non-local attention has been successfully applied in vision tasks due to the advantages in capturing long-range dependencies. However, the existing non-local attention generally learns long-range interactions among spatial locations in the spatial domain. It rarely involves in the frequency domain, which are likely to lead to beneficial outcomes. Recently, there are investigations that start to combine Fourier Transform with deep neural networks. In this work, we consider to learn the long-range interactions from the perspective of frequency. Specifically, we design a novel Non-Local Fourier Attention (NLFA) that combines the self-attention mechanism with Fourier Transform to capture the long-range spatial dependencies in the frequency domain. Furthermore, a new deep Residual Non-Local Fourier Network (RNLFNet) constructed with the Non-Local Fourier Attention and Residual Blocks is proposed for accelerated MRI. Such framework focuses on learning the information from both the spatial and frequency domain, which enjoys benefits from modelling both local details and global context between the degraded MR image and ground truth image pairs. The proposed model is evaluated on the MICCAI grand challenge datasets and fastMRI datasets, which significantly boosts the MR image reconstruction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
树123发布了新的文献求助10
1秒前
lff完成签到,获得积分10
2秒前
3秒前
大白完成签到 ,获得积分10
3秒前
爱吃辣条的彪哥完成签到,获得积分10
4秒前
体贴的如之完成签到,获得积分10
4秒前
5秒前
老北京发布了新的文献求助10
5秒前
高高发布了新的文献求助10
6秒前
科研通AI5应助大奋斗采纳,获得10
6秒前
8秒前
zho发布了新的文献求助10
9秒前
勤劳的筝发布了新的文献求助10
9秒前
酷波er应助防易容采纳,获得10
12秒前
zimu012完成签到,获得积分10
12秒前
英姑应助dogsday采纳,获得10
12秒前
13秒前
13秒前
木穹完成签到,获得积分10
15秒前
pure123发布了新的文献求助10
18秒前
Unique发布了新的文献求助10
18秒前
19秒前
老北京完成签到,获得积分10
21秒前
工藤新一发布了新的文献求助10
26秒前
HEAUBOOK应助Unique采纳,获得10
26秒前
27秒前
28秒前
干净雅旋完成签到,获得积分10
31秒前
空空发布了新的文献求助10
31秒前
orixero应助善良青筠采纳,获得10
32秒前
galvin发布了新的文献求助10
32秒前
负责的莫茗完成签到 ,获得积分10
32秒前
33秒前
椋鸟应助干净雅旋采纳,获得10
37秒前
123发布了新的文献求助10
38秒前
38秒前
英俊的铭应助Menand采纳,获得10
39秒前
ksl完成签到,获得积分10
39秒前
高兴的半芹完成签到,获得积分10
40秒前
jiapei_1019完成签到,获得积分20
42秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805322
求助须知:如何正确求助?哪些是违规求助? 3350279
关于积分的说明 10348304
捐赠科研通 3066188
什么是DOI,文献DOI怎么找? 1683602
邀请新用户注册赠送积分活动 809099
科研通“疑难数据库(出版商)”最低求助积分说明 765225