MFCNet: A multi-modal fusion and calibration networks for 3D pancreas tumor segmentation on PET-CT images

计算机科学 人工智能 分割 正电子发射断层摄影术 特征(语言学) 情态动词 光学(聚焦) 模式识别(心理学) 模态(人机交互) 串联(数学) 计算机视觉 核医学 医学 数学 物理 语言学 哲学 化学 高分子化学 光学 组合数学
作者
Fei Wang,Chao Cheng,Weiwei Cao,Zhongyi Wu,Heng Wang,Wenting Wei,Zhuangzhi Yan,Zhaobang Liu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:155: 106657-106657 被引量:22
标识
DOI:10.1016/j.compbiomed.2023.106657
摘要

In clinical diagnosis, positron emission tomography and computed tomography (PET-CT) images containing complementary information are fused. Tumor segmentation based on multi-modal PET-CT images is an important part of clinical diagnosis and treatment. However, the existing current PET-CT tumor segmentation methods mainly focus on positron emission tomography (PET) and computed tomography (CT) feature fusion, which weakens the specificity of the modality. In addition, the information interaction between different modal images is usually completed by simple addition or concatenation operations, but this has the disadvantage of introducing irrelevant information during the multi-modal semantic feature fusion, so effective features cannot be highlighted. To overcome this problem, this paper propose a novel Multi-modal Fusion and Calibration Networks (MFCNet) for tumor segmentation based on three-dimensional PET-CT images. First, a Multi-modal Fusion Down-sampling Block (MFDB) with a residual structure is developed. The proposed MFDB can fuse complementary features of multi-modal images while retaining the unique features of different modal images. Second, a Multi-modal Mutual Calibration Block (MMCB) based on the inception structure is designed. The MMCB can guide the network to focus on a tumor region by combining different branch decoding features using the attention mechanism and extracting multi-scale pathological features using a convolution kernel of different sizes. The proposed MFCNet is verified on both the public dataset (Head and Neck cancer) and the in-house dataset (pancreas cancer). The experimental results indicate that on the public and in-house datasets, the average Dice values of the proposed multi-modal segmentation network are 74.14% and 76.20%, while the average Hausdorff distances are 6.41 and 6.84, respectively. In addition, the experimental results show that the proposed MFCNet outperforms the state-of-the-art methods on the two datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lilyy完成签到,获得积分10
刚刚
Sunrise完成签到,获得积分10
刚刚
旺仔不甜完成签到,获得积分10
刚刚
1秒前
超帅的薯片完成签到,获得积分10
1秒前
勤劳冰烟完成签到,获得积分10
2秒前
2秒前
希望天下0贩的0应助SUE采纳,获得10
2秒前
樊孟完成签到,获得积分10
3秒前
余杭村王小虎完成签到,获得积分10
3秒前
max发布了新的文献求助10
3秒前
我要发sci应助neil采纳,获得10
4秒前
5秒前
成就的书包完成签到,获得积分10
6秒前
ding应助博修采纳,获得10
6秒前
巷陌巾完成签到,获得积分10
6秒前
呱呱乐完成签到,获得积分10
7秒前
852应助火星上的迎天采纳,获得10
7秒前
8秒前
猪猪hero应助mn略略略采纳,获得10
8秒前
9秒前
FashionBoy应助NingnnnZhang采纳,获得10
9秒前
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得30
10秒前
哈哈哈完成签到,获得积分10
10秒前
摸摸头应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
10秒前
情怀应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
李爱国应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
烟花应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798813
求助须知:如何正确求助?哪些是违规求助? 3344550
关于积分的说明 10320522
捐赠科研通 3060978
什么是DOI,文献DOI怎么找? 1679963
邀请新用户注册赠送积分活动 806813
科研通“疑难数据库(出版商)”最低求助积分说明 763386