Abstract A061: Machine Learning and Causal Inference-Based Predictive Risk Modeling of Unplanned Radiation Treatment Interruption

因果推理 推论 机器学习 人工智能 计算机科学 医学 病理
作者
Rezaur Rashid,Soheil Hashtarkhani,Parnian Kheirkhah Rahimabad,Brianna M White,Fekede Asefa Kumsa,Lokesh Chinthala,Janet A. Zink,Christopher Brett,Robert L. Davis,David A. Schwartz,Arash Shaban‐Nejad
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:31 (13_Supplement): A061-A061
标识
DOI:10.1158/1557-3265.aimachine-a061
摘要

Abstract Background: Adherence to scheduled radiation therapy (RT) is a key determinant of cancer treatment quality and outcomes. For this study, we developed an interpretable AI model to identify 1) patients at risk for multiple unplanned RT interruptions and 2) modifiable factors contributing to an elevated risk of RT interruption. Methods: We retrospectively analyzed clinical, socioeconomic, demographic, and behavioral data from 2,525 RT patients treated at the University of Tennessee Medical Center (UTMC) in Knoxville. The study cohort was dichotomized into patients with 0-1 unplanned RT interruptions (Class 0; n≈2000) and those missing >2 sessions (Class 1; n≈500). The dataset was partitioned into training, validation, and test sets (70:15:15 ratio), with class imbalance addressed in the training set by synthetic data generation via Tabular Variational Autoencoder. Twenty-seven candidate features were initially evaluated for multicollinearity using correlation matrices, heatmap visualization, and Variance Inflation Factor analysis. We applied feature selection methods (correlation-based techniques and causality-based approaches) to limit further modeling to the most predictive 15 core features. We compared XGBoost and Neural Networks-based classifiers, with each model undergoing hyperparameter optimization using Bayesian optimization methods. SHapley Additive exPlanations (SHAP) analysis was used to identify influential predictors. Results: The final optimized XGBoost model provided an overall accuracy of 82% and AUC-ROC of 63% on the independent test set. All tested models yielded similar performance, confirming the consistent predictive value of our selected features despite class imbalance. SHAP analyses identified dominant predictive contributions from treatment factors (prescribed radiation dose per session), patient resources (insurance coverage, marital status, social vulnerability indices), and travel distance to the radiotherapy facility. Supplementary causal analysis employing total causal effect methods further corroborated the direct influence of all these features. Conclusions: Our results suggest that causal inference and explainable AI modeling can provide useful interrogative strategies to identify modifiable predictors of RT adherence. Further refinement of predictive decision-support tools may lead to automated approaches to match high-risk patients with personalized interventions (e.g. community-based care navigation and/or patient psychosocial support) in real-world clinical settings to overcome social barriers to RT access. Citation Format: Rezaur Rashid, Soheil Hashtarkhani, Parnian K. Rahimabad, Brianna M. White, Fekede A. Kumsa, Lokesh Chinthala, Janet A. Zink, Christopher L. Brett, Robert L. Davis, David L. Schwartz, Arash Shaban-Nejad. Machine Learning and Causal Inference-Based Predictive Risk Modeling of Unplanned Radiation Treatment Interruption [abstract]. In: Proceedings of the AACR Special Conference in Cancer Research: Artificial Intelligence and Machine Learning; 2025 Jul 10-12; Montreal, QC, Canada. Philadelphia (PA): AACR; Clin Cancer Res 2025;31(13_Suppl):Abstract nr A061.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活泼的鲜花完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助50
1秒前
NexusExplorer应助禹映安采纳,获得10
1秒前
2秒前
yw完成签到,获得积分10
3秒前
wanci应助zh采纳,获得10
4秒前
魔幻凝云完成签到,获得积分10
5秒前
iris0930完成签到,获得积分10
6秒前
aa发布了新的文献求助30
6秒前
6秒前
7秒前
白桃枝完成签到,获得积分10
7秒前
james完成签到,获得积分10
8秒前
Coral完成签到,获得积分10
9秒前
9秒前
白日梦发布了新的文献求助10
10秒前
wkyt完成签到 ,获得积分10
10秒前
faker完成签到,获得积分10
11秒前
12秒前
JokerSkye发布了新的文献求助10
13秒前
SciGPT应助PG采纳,获得10
13秒前
小马甲应助小Z采纳,获得10
15秒前
17秒前
5af45f发布了新的文献求助10
18秒前
太空人发布了新的文献求助10
18秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
健忘涟妖发布了新的文献求助20
20秒前
momo发布了新的文献求助10
20秒前
daomaihu完成签到 ,获得积分10
22秒前
lizishu应助xcwy采纳,获得10
24秒前
Atropa发布了新的文献求助10
24秒前
25秒前
禹映安发布了新的文献求助10
25秒前
李健的小迷弟应助dongdong采纳,获得10
26秒前
夏洛不克发布了新的文献求助200
29秒前
无知者海生完成签到 ,获得积分10
30秒前
hktbk完成签到 ,获得积分10
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5797826
求助须知:如何正确求助?哪些是违规求助? 5786870
关于积分的说明 15495593
捐赠科研通 4924581
什么是DOI,文献DOI怎么找? 2650955
邀请新用户注册赠送积分活动 1598158
关于科研通互助平台的介绍 1553002