Abstract A061: Machine Learning and Causal Inference-Based Predictive Risk Modeling of Unplanned Radiation Treatment Interruption

因果推理 推论 机器学习 人工智能 计算机科学 医学 病理
作者
Rezaur Rashid,Soheil Hashtarkhani,Parnian Kheirkhah Rahimabad,Brianna M White,Fekede Asefa Kumsa,Lokesh Chinthala,Janet A. Zink,Christopher Brett,Robert L. Davis,David A. Schwartz,Arash Shaban‐Nejad
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:31 (13_Supplement): A061-A061
标识
DOI:10.1158/1557-3265.aimachine-a061
摘要

Abstract Background: Adherence to scheduled radiation therapy (RT) is a key determinant of cancer treatment quality and outcomes. For this study, we developed an interpretable AI model to identify 1) patients at risk for multiple unplanned RT interruptions and 2) modifiable factors contributing to an elevated risk of RT interruption. Methods: We retrospectively analyzed clinical, socioeconomic, demographic, and behavioral data from 2,525 RT patients treated at the University of Tennessee Medical Center (UTMC) in Knoxville. The study cohort was dichotomized into patients with 0-1 unplanned RT interruptions (Class 0; n≈2000) and those missing >2 sessions (Class 1; n≈500). The dataset was partitioned into training, validation, and test sets (70:15:15 ratio), with class imbalance addressed in the training set by synthetic data generation via Tabular Variational Autoencoder. Twenty-seven candidate features were initially evaluated for multicollinearity using correlation matrices, heatmap visualization, and Variance Inflation Factor analysis. We applied feature selection methods (correlation-based techniques and causality-based approaches) to limit further modeling to the most predictive 15 core features. We compared XGBoost and Neural Networks-based classifiers, with each model undergoing hyperparameter optimization using Bayesian optimization methods. SHapley Additive exPlanations (SHAP) analysis was used to identify influential predictors. Results: The final optimized XGBoost model provided an overall accuracy of 82% and AUC-ROC of 63% on the independent test set. All tested models yielded similar performance, confirming the consistent predictive value of our selected features despite class imbalance. SHAP analyses identified dominant predictive contributions from treatment factors (prescribed radiation dose per session), patient resources (insurance coverage, marital status, social vulnerability indices), and travel distance to the radiotherapy facility. Supplementary causal analysis employing total causal effect methods further corroborated the direct influence of all these features. Conclusions: Our results suggest that causal inference and explainable AI modeling can provide useful interrogative strategies to identify modifiable predictors of RT adherence. Further refinement of predictive decision-support tools may lead to automated approaches to match high-risk patients with personalized interventions (e.g. community-based care navigation and/or patient psychosocial support) in real-world clinical settings to overcome social barriers to RT access. Citation Format: Rezaur Rashid, Soheil Hashtarkhani, Parnian K. Rahimabad, Brianna M. White, Fekede A. Kumsa, Lokesh Chinthala, Janet A. Zink, Christopher L. Brett, Robert L. Davis, David L. Schwartz, Arash Shaban-Nejad. Machine Learning and Causal Inference-Based Predictive Risk Modeling of Unplanned Radiation Treatment Interruption [abstract]. In: Proceedings of the AACR Special Conference in Cancer Research: Artificial Intelligence and Machine Learning; 2025 Jul 10-12; Montreal, QC, Canada. Philadelphia (PA): AACR; Clin Cancer Res 2025;31(13_Suppl):Abstract nr A061.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西游发布了新的文献求助10
1秒前
科研通AI2S应助wroy采纳,获得10
1秒前
1秒前
蝈蝈发布了新的文献求助10
1秒前
LIU完成签到,获得积分10
1秒前
共享精神应助快乐的小王采纳,获得10
1秒前
2秒前
Qianyun完成签到,获得积分10
2秒前
3秒前
儒雅的蜜粉完成签到,获得积分10
3秒前
欢呼篮球完成签到,获得积分10
3秒前
YaoHui完成签到,获得积分10
6秒前
平淡寄云发布了新的文献求助10
6秒前
lxj发布了新的文献求助10
6秒前
茂密的头发完成签到,获得积分10
6秒前
linciko发布了新的文献求助10
7秒前
7秒前
7秒前
Corry完成签到 ,获得积分10
7秒前
lh完成签到,获得积分10
8秒前
金玉发布了新的文献求助10
8秒前
聂龙誉发布了新的文献求助10
8秒前
JamesPei应助ya采纳,获得10
9秒前
易达发布了新的文献求助10
9秒前
一只五条悟完成签到,获得积分10
9秒前
酷波er应助Liu采纳,获得10
10秒前
一鸣完成签到,获得积分10
10秒前
李健应助科研工作者采纳,获得10
11秒前
萱萱发布了新的文献求助10
12秒前
moon发布了新的文献求助10
12秒前
12秒前
13秒前
范丞丞发布了新的文献求助10
14秒前
研友_nxV4m8完成签到,获得积分10
15秒前
莫等闲完成签到,获得积分10
16秒前
17秒前
xuxu完成签到 ,获得积分10
18秒前
小二郎应助王京采纳,获得10
19秒前
美好凡柔发布了新的文献求助10
19秒前
研友_VZG7GZ应助专注垣采纳,获得10
19秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4100867
求助须知:如何正确求助?哪些是违规求助? 3638670
关于积分的说明 11530769
捐赠科研通 3347458
什么是DOI,文献DOI怎么找? 1839660
邀请新用户注册赠送积分活动 906912
科研通“疑难数据库(出版商)”最低求助积分说明 824110