二乙胺
二甲胺
催化作用
化学
聚合
位阻效应
密度泛函理论
物理化学
计算化学
立体化学
有机化学
聚合物
作者
Joaquín Hernández‐Fernández,Katherine Liset Ortiz Paternina,H. Cano
出处
期刊:Polymers
[MDPI AG]
日期:2025-06-30
卷期号:17 (13): 1834-1834
标识
DOI:10.3390/polym17131834
摘要
In this study, density functional theory (DFT) was used to analyze the processes that govern the interactions among triethylaluminum (TEAL), the Ziegler–Natta (ZN) catalyst, and the inhibitory compounds dimethylamine (DMA) and diethylamine (DEA) during olefin polymerization. The structural and charge characteristics of these inhibitors were examined through steric maps and DFT calculations. Combined DFT calculations (D3-B3LYP/6-311++G(d,p)) and IR spectroscopic analysis show that the most efficient way to deactivate the ZN catalyst is via the initial formation of the TEAL·DMA complex. This step has a kinetic barrier of only 27 kcal mol−1 and a negative ΔG, in stark contrast to the >120 kcal mol−1 required to form TEAL·DEA. Once generated, TEAL·DMA adsorbs onto the TiCl4/MgCl2 cluster with adsorption energies of −22.9 kcal mol−1 in the gas phase and −25.4 kcal mol−1 in n-hexane (SMD model), values 5–10 kcal mol−1 more favorable than those for TEAL·DEA. This explains why, although dimethylamine is present at only 140 ppm, its impact on productivity (−19.6%) is practically identical to that produced by 170 ppm of diethylamine (−20%). The persistence of the ν(Al–N) band at ~615 cm−1, along with a >30% decrease in the Al–C/Ti–C bands between 500 and 900 cm−1, the downward shift of the N–H stretch from ~3300 to 3200 cm−1, and the +15 cm−1 increase in ν(C–N) confirm Al←N coordination and blockage of alkyl transfer, establishing the TEAL·DMA → ZN pathway as the dominant catalytic poisoning mechanism.
科研通智能强力驱动
Strongly Powered by AbleSci AI