三元运算
多路复用
学习迁移
计算机科学
人工智能
拉曼散射
生物系统
二进制数
转化式学习
机器学习
模式识别(心理学)
拉曼光谱
材料科学
数学
物理
生物信息学
算术
心理学
光学
生物
程序设计语言
教育学
作者
Emily Xi Tan,Jaslyn Ru Ting Chen,Desmond Wei Cheng Pang,Nguan Soon Tan,In Yee Phang,Xing Yi Ling
出处
期刊:Angewandte Chemie
[Wiley]
日期:2025-07-02
卷期号:64 (36): e202508717-e202508717
被引量:2
标识
DOI:10.1002/anie.202508717
摘要
Abstract Identifying and quantifying compounds in unknown mixtures represents the ultimate goal of surface‐enhanced Raman scattering (SERS) spectroscopy but remains a significant challenge in real‐world applications. Existing machine learning‐driven SERS methods are limited by their reliance on prior knowledge of mixture composition, while time‐consuming experimental testing of all possibilities is not feasible. We integrate the molecular specificity of SERS with an adaptive transfer learning (TL) strategy to sequentially identify and quantify carnitine components in 11 unknown binary, ternary, and quaternary multicarnitine mixtures, achieving 100% identification accuracy and a mean quantitation error of only 3%. All models are trained solely on pure compound spectral data, enabling scalable, qualitative, and quantitative analysis of complex, unseen multiplex spectra—without requiring costly and time‐consuming training data collection for every possible mixture. This predictive transfer learning‐driven approach marks a transformative leap for practical SERS applications, allowing accurate analysis of complex mixtures without prior knowledge of components or ratios.
科研通智能强力驱动
Strongly Powered by AbleSci AI