轨道能级差
乳清酸
材料科学
纳米技术
化学
有机化学
生物化学
分子
作者
K. Yue,Zongxi Lin,Jinsen Zhang,Ziang Ren,Hengyu Feng,Lei Wang,Jiale Zheng,Cong Ma,Xiaohan Cai,Pengfei Shi,Jianwei Nai,Yao Wang,Jianmin Luo,Huadong Yuan,Shihui Zou,Xinyong Tao,Yujing Liu
出处
期刊:PubMed
日期:2025-08-14
卷期号:: e07263-e07263
标识
DOI:10.1002/smll.202507263
摘要
Biomacromolecules hold promise as sustainable fillers to address the challenges of low ionic conductivity and interfacial instability in polymer electrolytes, yet their structural complexity obscures in-depth mechanistic understanding. Herein, small biomolecules are strategically incorporated, which retain the key functional groups of biomacromolecules, as highly effective fillers for polymer electrolytes. Orotic acid (OA), a small-molecule building block of ribonucleic acid, enhances lithium (Li) ion conductivity by facilitating the dissociation of lithium bis(trifluoromethanesulfonyl)imide without compromising the crystallinity of the polyethylene oxide (PEO) matrix. The amide-rich conjugated structure endows OA with a low lowest unoccupied molecular orbital energy level, promoting its preferential decomposition to form a lithium nitride (Li3N) embedded solid electrolyte interphase. This dual-function mechanism enables the OA-optimized PEO electrolyte to achieve 95.2% capacity retention after 350 cycles (0.5 C, initial capacity: 148 mAh g-1) and >80% retention after 600 cycles (1.0 C, initial capacity: 128.6 mAh g-1) in Li||LiFePO4 cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI