Matheuristic co-evolutionary algorithm for solving the integrated processing and transportation scheduling problem with processing-transportation composite robots

机器人 调度(生产过程) 计算机科学 复合数 数学优化 工程类 算法 人工智能 数学
作者
Meizhou Zhang,Min Zhou,Liping Zhang,Zikai Zhang
出处
期刊:Journal of Computational Design and Engineering [Oxford University Press]
卷期号:12 (9): 131-161
标识
DOI:10.1093/jcde/qwaf089
摘要

Abstract With the rapid development of robotic technology, a new type of robot, the processing-transportation composite robot (PTCR), has been widely applied in manufacturing systems. It has multiple functions, such as transferring jobs between machines and processing tasks, thereby greatly enhancing production flexibility. Hence, this study investigates the integrated processing and transportation scheduling problem with PTCRs (IPTS-PTCRs) in a job shop environment to minimise the makespan. A mixed-integer linear programming (MILP) model is first designed to define this complex problem. Then, a hybrid algorithm incorporating mathematical programming and a collaborative evolutionary mechanism is designed to solve the model, named the matheuristic co-evolutionary algorithm (MCEA). This algorithm combines multiple heuristics with a random method, resulting in a two-stage collaborative initialisation that generates a high-quality and diverse initial population. A novel collaborative evolutionary mechanism is incorporated into the crossover and mutation operators to enhance interactions between sub-populations. A novel local search based on adaptive decomposed MILP is developed to conduct an in-depth exploration of the best solution. Finally, multiple sets of experiments are conducted to validate the effectiveness of the proposed MILP model and MCEA. The experimental results show that the MILP model can obtain optimal solutions for small-scale instances. The improved components enhance the average performance of the MCEA by 44.1%. The proposed MCEA outperforms five state-of-the-art algorithms in terms of numerical analysis, statistical testing, differential comparison, and stability evaluation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
赘婿应助zy采纳,获得10
1秒前
可爱的函函应助如意闭月采纳,获得10
2秒前
虚生花完成签到,获得积分10
2秒前
2秒前
zhang发布了新的文献求助10
3秒前
Ava应助TT001采纳,获得10
3秒前
3秒前
朝圣者完成签到,获得积分10
3秒前
JINtian应助L112233采纳,获得10
3秒前
luckily发布了新的文献求助10
4秒前
康超发布了新的文献求助10
4秒前
激情的煎饼完成签到,获得积分10
5秒前
无花果应助zhang采纳,获得10
6秒前
6秒前
路寻发布了新的文献求助10
8秒前
SciGPT应助安室透的透采纳,获得10
9秒前
liu完成签到,获得积分10
9秒前
科研通AI6应助跳跃的萧采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
李大鸟完成签到,获得积分10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
852应助科研通管家采纳,获得30
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
烟花应助科研通管家采纳,获得10
12秒前
烟花应助科研通管家采纳,获得30
12秒前
12秒前
Akim应助科研通管家采纳,获得20
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419966
求助须知:如何正确求助?哪些是违规求助? 4535178
关于积分的说明 14148588
捐赠科研通 4451975
什么是DOI,文献DOI怎么找? 2441982
邀请新用户注册赠送积分活动 1433488
关于科研通互助平台的介绍 1410732