WM-MoE: Weather-aware Multi-scale Mixture-of-Experts for Blind Adverse Weather Removal

恶劣天气 环境科学 气象学 炎热的天气 人工影响天气 极端天气 天气预报 恶劣天气 气候学 地理 气候变化 地质学 风暴 海洋学
作者
Yulin Luo,Rui Zhao,Xiaobao Wei,Jinwei Chen,Yijie Lu,Shenghao Xie,Tianyu Wang,Ruiqin Xiong,Ming Lu,Shanghang Zhang
出处
期刊:Cornell University - arXiv 被引量:5
标识
DOI:10.48550/arxiv.2303.13739
摘要

Adverse weather removal tasks like deraining, desnowing, and dehazing are usually treated as separate tasks. However, in practical autonomous driving scenarios, the type, intensity,and mixing degree of weather are unknown, so handling each task separately cannot deal with the complex practical scenarios. In this paper, we study the blind adverse weather removal problem. Mixture-of-Experts (MoE) is a popular model that adopts a learnable gate to route the input to different expert networks. The principle of MoE involves using adaptive networks to process different types of unknown inputs. Therefore, MoE has great potential for blind adverse weather removal. However, the original MoE module is inadequate for coupled multiple weather types and fails to utilize multi-scale features for better performance. To this end, we propose a method called Weather-aware Multi-scale MoE (WM-MoE) based on Transformer for blind weather removal. WM-MoE includes two key designs: WEather-Aware Router (WEAR) and Multi-Scale Experts (MSE). WEAR assigns experts for each image token based on decoupled content and weather features, which enhances the model's capability to process multiple adverse weathers. To obtain discriminative weather features from images, we propose Weather Guidance Fine-grained Contrastive Learning (WGF-CL), which utilizes weather cluster information to guide the assignment of positive and negative samples for each image token. Since processing different weather types requires different receptive fields, MSE leverages multi-scale features to enhance the spatial relationship modeling capability, facilitating the high-quality restoration of diverse weather types and intensities. Our method achieves state-of-the-art performance in blind adverse weather removal on two public datasets and our dataset. We also demonstrate the advantage of our method on downstream segmentation tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助河畔采纳,获得10
1秒前
盐消发布了新的文献求助10
1秒前
Tain完成签到,获得积分10
2秒前
Joy完成签到,获得积分10
2秒前
cici完成签到,获得积分10
4秒前
云淡风轻发布了新的文献求助30
4秒前
5秒前
5秒前
完美世界应助邪恶产品采纳,获得10
7秒前
馆长举报xiaohuoziya1024求助涉嫌违规
7秒前
8秒前
kai完成签到,获得积分10
8秒前
502完成签到,获得积分10
9秒前
脑洞疼应助Qiao采纳,获得30
9秒前
浮浮世世发布了新的文献求助10
9秒前
研友_VZG7GZ应助犹豫小海豚采纳,获得10
9秒前
回来完成签到,获得积分10
11秒前
11秒前
12秒前
桐桐应助502采纳,获得10
13秒前
13秒前
13秒前
pc 潮完成签到,获得积分10
13秒前
善学以致用应助浮浮世世采纳,获得10
13秒前
所所应助一量朝朝幕采纳,获得10
15秒前
15秒前
科研痛痛痛完成签到 ,获得积分10
16秒前
16秒前
余呀余完成签到 ,获得积分10
16秒前
17秒前
18秒前
Big_Yinyin发布了新的文献求助10
18秒前
所所应助牛超采纳,获得10
18秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
顾矜应助亓大大采纳,获得10
19秒前
丘比特应助陌上采纳,获得10
19秒前
饼饼完成签到,获得积分10
19秒前
brucezheng发布了新的文献求助10
20秒前
小作坊钳工完成签到,获得积分10
20秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5121239
求助须知:如何正确求助?哪些是违规求助? 4326427
关于积分的说明 13479600
捐赠科研通 4160254
什么是DOI,文献DOI怎么找? 2279904
邀请新用户注册赠送积分活动 1281702
关于科研通互助平台的介绍 1220670