Strategies for predicting soil organic matter in the field using the Chinese Vis-NIR soil spectral library

原位 偏最小二乘回归 谱线 土壤科学 比例(比率) 土壤有机质 生物系统 化学 环境科学 数学 土壤水分 统计 地图学 物理 生物 天文 地理 有机化学
作者
Meihua Yang,Songchao Chen,Dongyun Xu,Yongsheng Hong,Shuo Li,Jie Peng,Wenjun Ji,Guo Xi,Xiaomin Zhao,Zhou Shi
出处
期刊:Geoderma [Elsevier BV]
卷期号:433: 116461-116461 被引量:11
标识
DOI:10.1016/j.geoderma.2023.116461
摘要

The large-scale soil spectral library (SSL) can provide abundant information for predicting soil properties at a local scale, especially in places lacking data. However, since all the existing large-scale SSLs only contain dry spectra recorded under laboratory conditions, the challenge remains in using SSL for predicting soil information using in situ soil spectra. Previous studies have focused on the methods of transforming in situ spectra to dry spectra when using SSLs, while few studies have compared which strategies are optimal in predicting soil properties. To determine the optimal strategies for predicting soil organic matter (SOM) from an area not located in the archived Chinese Soil Spectral Library (CSSL), we investigated the prediction accuracy of memory-based learning (MBL) using spectra transformed by external parameter orthogonalization (EPO) on the CSSL (MBL_EPO) and on the CSSL spiked with subset samples selected by the conditioned Latin hypercube (cLH) algorithm (MBL_EPO_spiking) and using the data from CSSL spiked directedly by the subset in situ samples (MBL_wet_spiking). We also evaluated the prediction accuracy of the in situ and dry spectra using the selected subset and the partial least squares regression (PLSR) model directly. The results showed that the mean squared Euclidean distance (msd) calculated from spectra was an optimal indicator for selecting the representative samples for both the laboratory and in situ conditions. When only 20 samples with both in situ and dry spectra are available to predict SOM, MBL_EPO_spiking is suggested; otherwise, MBL_wet_spiking with the spiking of in situ spectra determined by the smallest msd is optimal. Our findings pave the way for efficient SOM prediction in situ by integrating a large-scale SSL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助出水的芙蓉采纳,获得10
刚刚
hl完成签到,获得积分10
1秒前
Zetlynn发布了新的文献求助20
1秒前
喜悦的绮露发布了新的文献求助200
2秒前
2秒前
科研通AI2S应助子怡采纳,获得10
2秒前
3秒前
依风完成签到,获得积分10
3秒前
大个应助科研通管家采纳,获得10
4秒前
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
乐乐应助韩兵采纳,获得10
4秒前
snowy_owl发布了新的文献求助10
4秒前
搜集达人应助科研通管家采纳,获得30
4秒前
史风华完成签到,获得积分10
4秒前
残幻应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
冰魂应助科研通管家采纳,获得20
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
LX应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
未见山完成签到,获得积分10
5秒前
上官若男应助科研通管家采纳,获得20
5秒前
5秒前
cdercder应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
许甜甜鸭应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838071
求助须知:如何正确求助?哪些是违规求助? 3380330
关于积分的说明 10513807
捐赠科研通 3099923
什么是DOI,文献DOI怎么找? 1707265
邀请新用户注册赠送积分活动 821577
科研通“疑难数据库(出版商)”最低求助积分说明 772765