Offshore Hydrocarbon Exploitation Target Extraction Based on Time-Series Night Light Remote Sensing Images and Machine Learning Models: A Comparison of Six Machine Learning Algorithms and Their Multi-Feature Importance

支持向量机 人工智能 随机森林 计算机科学 机器学习 特征提取 人工神经网络 遥感 模式识别(心理学) 地质学
作者
Rui Ma,Wen-Zhou Wu,Qi Wang,Na Liu‎,Yutong Chang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:15 (7): 1843-1843 被引量:5
标识
DOI:10.3390/rs15071843
摘要

The continuous acquisition of spatial distribution information for offshore hydrocarbon exploitation (OHE) targets is crucial for the research of marine carbon emission activities. The methodological framework based on time-series night light remote sensing images with a feature increment strategy coupled with machine learning models has become one of the most novel techniques for OHE target extraction in recent years. Its performance is mainly influenced by machine learning models, target features, and regional differences. However, there is still a lack of internal comparative studies on the different influencing factors in this framework. Therefore, based on this framework, we selected four different typical experimental regions within the hydrocarbon basins in the South China Sea to validate the extraction performance of six machine learning models (the classification and regression tree (CART), random forest (RF), artificial neural networks (ANN), support vector machine (SVM), Mahalanobis distance (MaD), and maximum likelihood classification (MLC)) using time-series VIIRS night light remote sensing images. On this basis, the influence of the regional differences and the importance of the multi-features were evaluated and analyzed. The results showed that (1) the RF model performed the best, with an average accuracy of 90.74%, which was much higher than the ANN, CART, SVM, MLC, and MaD. (2) The OHE targets with a lower light radiant intensity as well as a closer spatial location were the main subjects of the omission extraction, while the incorrect extractions were mostly caused by the intensive ship activities. (3) The coefficient of variation was the most important feature that affected the accuracy of the OHE target extraction, with a contribution rate of 26%. This was different from the commonly believed frequency feature in the existing research. In the context of global warming, this study can provide a valuable information reference for studies on OHE target extraction, carbon emission activity monitoring, and carbon emission dynamic assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢呼无春发布了新的文献求助30
刚刚
怕孤独的鸽子应助可爱迪采纳,获得20
2秒前
小小手冰凉完成签到 ,获得积分20
2秒前
dcdsdc完成签到,获得积分20
4秒前
4秒前
Moonchild发布了新的文献求助30
5秒前
超级灰狼发布了新的文献求助10
5秒前
大薯条完成签到 ,获得积分10
6秒前
6秒前
Jiawww完成签到,获得积分10
7秒前
念与惜发布了新的文献求助10
7秒前
Na发布了新的文献求助10
7秒前
8秒前
俗丨完成签到,获得积分10
9秒前
小麦完成签到,获得积分10
9秒前
spaghetti发布了新的文献求助10
9秒前
11秒前
小鞋完成签到,获得积分10
12秒前
荀煜祺发布了新的文献求助20
12秒前
金轩完成签到 ,获得积分10
16秒前
共享精神应助ice2233采纳,获得10
16秒前
mo发布了新的文献求助10
16秒前
彭于晏应助无算浮白采纳,获得10
16秒前
17秒前
欢呼无春完成签到,获得积分20
17秒前
18秒前
KJ完成签到,获得积分10
19秒前
迷路的含桃完成签到 ,获得积分10
19秒前
muyassar完成签到,获得积分10
20秒前
21秒前
十言发布了新的文献求助10
21秒前
轻松妙柏完成签到,获得积分10
21秒前
ycccccc完成签到 ,获得积分10
24秒前
24秒前
研友_VZG7GZ应助陈伟杰采纳,获得10
24秒前
25秒前
Eton发布了新的文献求助200
25秒前
25秒前
方方别方完成签到 ,获得积分10
26秒前
一目完成签到,获得积分10
26秒前
高分求助中
Java: A Beginner's Guide, 10th Edition 5000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3848763
求助须知:如何正确求助?哪些是违规求助? 3391487
关于积分的说明 10568161
捐赠科研通 3112182
什么是DOI,文献DOI怎么找? 1715103
邀请新用户注册赠送积分活动 825581
科研通“疑难数据库(出版商)”最低求助积分说明 775663