Ultra-short term power load forecasting based on CEEMDAN-SE and LSTM neural network

期限(时间) 人工神经网络 电力系统 功率(物理) 计算机科学 时间序列 人工智能 机器学习 物理 量子力学
作者
Ke Li,Wei Huang,Gaoyuan Hu,Jiao Li
出处
期刊:Energy and Buildings [Elsevier BV]
卷期号:279: 112666-112666 被引量:146
标识
DOI:10.1016/j.enbuild.2022.112666
摘要

Ultra-short-term power load forecasting refers to the use of load and weather information from the prior few hours to forecast the load for the next hour, which is very important for power dispatch and the power spot market establishment. Based on time series decomposition-reconstruction modeling and neural network forecasting, this study constructed a CEEMDAN-1SE-LSTM model and used it to forecast the ultra-short-term electricity load in Changsha, China, considering meteorological and holiday factors. The article first decomposed the power load data from May 13, 2014, to May 13, 2017, at 24 time points per day for three years to obtain six component series, and then reconstructed them into a two-component series based on the sample entropy analysis to reflect the fluctuation and trend characteristics of the power load. Then, the LSTM neural network model was used to predict and superimpose the reconstructed component series to obtain the final prediction results. It was found that the RMSE, MAE, and MAPE of the CEEMDAN-SE-LSTM model were 62.102, 47.490, and 1.649 %, respectively, which were significantly better than those of the ARMA, LSTM single-prediction, EEMD-LSTM, and CEEMDAN-LSTM models. This study greatly improves the accuracy of ultra-short-term power-load forecasting, provides support for ultra-short-term power dispatching in Changsha, and provides a reference for other cities to develop short-term and ultra-short-term power load forecasting models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
汉堡包应助温酒随行采纳,获得10
2秒前
2秒前
Ting完成签到 ,获得积分10
3秒前
希望天下0贩的0应助Felix采纳,获得10
3秒前
HM发布了新的文献求助10
3秒前
情怀应助传统的大白采纳,获得10
3秒前
Naaa完成签到,获得积分10
3秒前
端庄幻桃完成签到 ,获得积分10
4秒前
橙子西瓜发布了新的文献求助10
4秒前
NexusExplorer应助phl采纳,获得10
4秒前
4秒前
6秒前
6秒前
6秒前
spring发布了新的文献求助10
7秒前
简称王完成签到 ,获得积分10
7秒前
8秒前
望北楼主发布了新的文献求助10
8秒前
风中钥匙完成签到,获得积分10
8秒前
中原第一深情完成签到,获得积分10
8秒前
要长高了发布了新的文献求助10
9秒前
睡不完的觉完成签到,获得积分10
9秒前
星辰大海应助赫连烙采纳,获得10
9秒前
9秒前
小宇发布了新的文献求助10
10秒前
早点睡吧完成签到,获得积分10
10秒前
LXN完成签到,获得积分10
10秒前
10秒前
11秒前
pursuit完成签到,获得积分10
11秒前
zyq完成签到,获得积分10
11秒前
Kay76发布了新的文献求助10
11秒前
12秒前
lian发布了新的文献求助10
12秒前
可爱的函函应助HM采纳,获得10
12秒前
12秒前
王大可完成签到,获得积分10
12秒前
yliu完成签到,获得积分10
12秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4062170
求助须知:如何正确求助?哪些是违规求助? 3600822
关于积分的说明 11435624
捐赠科研通 3324148
什么是DOI,文献DOI怎么找? 1827611
邀请新用户注册赠送积分活动 898081
科研通“疑难数据库(出版商)”最低求助积分说明 818877