A generalized extended Kalman particle filter with unknown input for nonlinear system‐input identification under non‐Gaussian measurement noises

卡尔曼滤波器 高斯分布 非线性系统 控制理论(社会学) 鉴定(生物学) 计算机科学 扩展卡尔曼滤波器 滤波器(信号处理) 颗粒过滤器 非线性系统辨识 系统标识 集合卡尔曼滤波器 数学 算法 人工智能 物理 度量(数据仓库) 生物 数据库 量子力学 植物 控制(管理) 计算机视觉
作者
Ying Lei,Junlong Lai,Jinshan Huang,Chengkai Qi
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:29 (12) 被引量:8
标识
DOI:10.1002/stc.3139
摘要

It is necessary to investigate the identification of structural systems and unknown inputs under non-Gaussian measurement noises. In recent years, a few scholars have proposed methods of particle filter (PF) with unknown input for such task. However, these PF with unknown input require that unknown inputs appear in structural measurement equations. Such requirement may not always met, which restrict their practical application. To overcome this limitation, a generalized extended Kalman particle filter with unknown input (GEKPF-UI) is proposed for the simultaneous identification of structural systems and unknown inputs under non-Gaussian measurement noises. The proposed method is more general than the existing methods of PF with unknown input as it is applicable whether measurement equations contain or do not contain unknown inputs. It is proposed to establish the importance density function of PF by the generalized extended Kalman filter with unknown input (GEKF-UI) recently developed by the authors, in which GEKF-UI is utilized to generate particles and allow particles to carry the latest observational information. The effectiveness of the proposed method is verified through two numerical identification examples of a nonlinear hysteretic structure under two types of unknown inputs, including unknown external excitation and unknown seismic inputs, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
华仔应助xiaojingbao采纳,获得10
2秒前
2秒前
张倩完成签到,获得积分20
3秒前
4秒前
4秒前
4秒前
岁末完成签到 ,获得积分10
4秒前
6秒前
沉默的西牛完成签到,获得积分10
6秒前
8秒前
8秒前
idynamics完成签到,获得积分10
8秒前
8秒前
丘比特应助小鞠佩奇采纳,获得10
8秒前
杜若发布了新的文献求助10
8秒前
肖木木完成签到,获得积分10
9秒前
9秒前
sky完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
10秒前
11秒前
12秒前
13秒前
13秒前
besatified完成签到,获得积分10
13秒前
呼了个呼发布了新的文献求助10
13秒前
wkjfh应助我最好命采纳,获得10
14秒前
Lee完成签到,获得积分10
16秒前
tong童发布了新的文献求助10
17秒前
大脑袋应助seramoni采纳,获得30
17秒前
Ava应助besatified采纳,获得10
17秒前
李健应助梦若浮生采纳,获得10
18秒前
xiaoxiao发布了新的文献求助10
18秒前
18秒前
CodeCraft应助超级柜子采纳,获得10
18秒前
18秒前
小马发布了新的文献求助10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949193
求助须知:如何正确求助?哪些是违规求助? 3494620
关于积分的说明 11073033
捐赠科研通 3225274
什么是DOI,文献DOI怎么找? 1782921
邀请新用户注册赠送积分活动 867218
科研通“疑难数据库(出版商)”最低求助积分说明 800687