A Benchmark Dataset of Endoscopic Images and Novel Deep Learning Method to Detect Intestinal Metaplasia and Gastritis Atrophy

人工智能 计算机科学 深度学习 水准点(测量) 内窥镜检查 肠化生 目标检测 学习迁移 机器学习 计算机视觉 模式识别(心理学) 放射科 医学 内科学 地理 大地测量学
作者
Jie Yang,Yan Ou,Zhiqian Chen,Juan Liao,Wenjian Sun,Yang Luo,Chunbo Luo
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (1): 7-16 被引量:28
标识
DOI:10.1109/jbhi.2022.3217944
摘要

Endoscopy has been routinely used to diagnose stomach diseases including intestinal metaplasia (IM) and gastritis atrophy (GA). Such routine examination usually demands highly skilled radiologists to focus on a single patient with substantial time, causing the following two key challenges: 1) the dependency on the radiologist's experience leading to inconsistent diagnosis results across different radiologists; 2) limited examination efficiency due to the demanding time and energy consumption to the radiologist. This paper proposes to address these two issues in endoscopy using novel machine learning method in three-folds. Firstly, we build a novel and relatively big endoscopy dataset of 21,420 images from the widely used White Light Imaging (WLI) endoscopy and more recent Linked Color Imaging (LCI) endoscopy, which were annotated by experienced radiologists and validated with biopsy results, presenting a benchmark dataset. Secondly, we propose a novel machine learning model inspired by the human visual system, named as local attention grouping, to effectively extract key visual features, which is further improved by learning from multiple randomly selected regional images via ensemble learning. Such a method avoids the significant problem in the deep learning methods that decrease the resolution of original images to reduce the size of input samples, which would remove smaller lesions in endoscopy images. Finally, we propose a dual transfer learning strategy to train the model with co-distributed features between WLI and LCI images to further improve the performance. The experiment results, measured by accuracy, specificity, sensitivity, positive detection rate and negative detection rate, on IM are 99.18 %, 98.90 %, 99.45 %, 99.45 %, 98.91 %, respectively, and on GA are 97.12 %, 95.34 %, 98.90 %, 98.86 %, 95.50 %, respectively, achieving state of the art performance that outperforms current mainstream deep learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤独的问柳完成签到,获得积分10
1秒前
八宝周发布了新的文献求助10
5秒前
饱满芷卉完成签到,获得积分10
9秒前
Litm完成签到 ,获得积分10
10秒前
笑对人生完成签到 ,获得积分10
10秒前
CH完成签到 ,获得积分10
14秒前
鱼鱼和石头完成签到 ,获得积分10
17秒前
21秒前
Kelly完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
23秒前
31秒前
31秒前
量子星尘发布了新的文献求助10
51秒前
hhh123完成签到,获得积分10
1分钟前
Zeeki完成签到 ,获得积分10
1分钟前
jimforu完成签到 ,获得积分10
1分钟前
1分钟前
重要的炳完成签到 ,获得积分10
1分钟前
云痴子完成签到,获得积分10
1分钟前
1分钟前
jialin完成签到,获得积分10
1分钟前
害羞的雁易完成签到 ,获得积分10
1分钟前
1分钟前
秋秋完成签到,获得积分10
1分钟前
trophozoite完成签到 ,获得积分10
1分钟前
yolo完成签到 ,获得积分10
1分钟前
luoqin完成签到 ,获得积分10
1分钟前
劳伦斯完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Lrcx完成签到 ,获得积分10
1分钟前
1分钟前
qiqiqiqiqi完成签到 ,获得积分10
1分钟前
fjmelite完成签到 ,获得积分10
2分钟前
梅特卡夫完成签到,获得积分10
2分钟前
Apricot发布了新的文献求助30
2分钟前
qqaeao完成签到,获得积分10
2分钟前
Apricot完成签到,获得积分20
2分钟前
gankLei完成签到,获得积分10
2分钟前
HU完成签到 ,获得积分10
2分钟前
葉鳳怡完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5640038
求助须知:如何正确求助?哪些是违规求助? 4752208
关于积分的说明 15008038
捐赠科研通 4798304
什么是DOI,文献DOI怎么找? 2564455
邀请新用户注册赠送积分活动 1523192
关于科研通互助平台的介绍 1482855