已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

IMJENSE: Scan-Specific Implicit Representation for Joint Coil Sensitivity and Image Estimation in Parallel MRI

欠采样 迭代重建 计算机科学 人工智能 校准 计算机视觉 人工神经网络 代表(政治) 图像质量 算法 模式识别(心理学) 图像(数学) 数学 统计 政治 政治学 法学
作者
Ruimin Feng,Qing Wu,Jie Feng,Huajun She,Chunlei Liu,Yuyao Zhang,Hongjiang Wei
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (4): 1539-1553 被引量:5
标识
DOI:10.1109/tmi.2023.3342156
摘要

Parallel imaging is a commonly used technique to accelerate magnetic resonance imaging (MRI) data acquisition. Mathematically, parallel MRI reconstruction can be formulated as an inverse problem relating the sparsely sampled k-space measurements to the desired MRI image. Despite the success of many existing reconstruction algorithms, it remains a challenge to reliably reconstruct a high-quality image from highly reduced k-space measurements. Recently, implicit neural representation has emerged as a powerful paradigm to exploit the internal information and the physics of partially acquired data to generate the desired object. In this study, we introduced IMJENSE, a scan-specific implicit neural representation-based method for improving parallel MRI reconstruction. Specifically, the underlying MRI image and coil sensitivities were modeled as continuous functions of spatial coordinates, parameterized by neural networks and polynomials, respectively. The weights in the networks and coefficients in the polynomials were simultaneously learned directly from sparsely acquired k-space measurements, without fully sampled ground truth data for training. Benefiting from the powerful continuous representation and joint estimation of the MRI image and coil sensitivities, IMJENSE outperforms conventional image or k-space domain reconstruction algorithms. With extremely limited calibration data, IMJENSE is more stable than supervised calibrationless and calibration-based deep-learning methods. Results show that IMJENSE robustly reconstructs the images acquired at $5\times $ and $6\times $ accelerations with only 4 or 8 calibration lines in 2D Cartesian acquisitions, corresponding to 22.0% and 19.5% undersampling rates. The high-quality results and scanning specificity make the proposed method hold the potential for further accelerating the data acquisition of parallel MRI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刻苦的平松完成签到,获得积分10
刚刚
ashleyjr完成签到,获得积分10
3秒前
充电宝应助苗条的沛凝采纳,获得30
5秒前
上官若男应助13656479046采纳,获得10
5秒前
陈海伦完成签到 ,获得积分10
11秒前
13656479046完成签到,获得积分10
11秒前
wangxiaobin完成签到 ,获得积分10
13秒前
努力的咩咩完成签到 ,获得积分10
15秒前
我想放假完成签到 ,获得积分10
18秒前
朴素飞薇完成签到 ,获得积分10
20秒前
21秒前
充电宝应助大马哈鱼采纳,获得10
23秒前
果然发布了新的文献求助10
23秒前
X先生完成签到 ,获得积分10
23秒前
sgst完成签到,获得积分10
24秒前
cheng发布了新的文献求助10
29秒前
29秒前
xxxxxxxxx完成签到 ,获得积分10
29秒前
30秒前
30秒前
Hello应助爱听歌契采纳,获得10
33秒前
没有查不到的文献完成签到 ,获得积分10
33秒前
34秒前
zy123发布了新的文献求助10
34秒前
大马哈鱼发布了新的文献求助10
34秒前
所所应助无限的灵安采纳,获得10
37秒前
海鸥别叫了完成签到 ,获得积分10
37秒前
顺利问玉完成签到 ,获得积分10
38秒前
38秒前
39秒前
老实寒云完成签到 ,获得积分10
44秒前
洪武发布了新的文献求助10
45秒前
科研通AI5应助独特靖巧采纳,获得10
49秒前
清新的宛丝完成签到,获得积分10
49秒前
50秒前
洪武完成签到,获得积分10
52秒前
雨相所至发布了新的文献求助10
54秒前
Ava应助qianyuan采纳,获得10
56秒前
Bystander完成签到 ,获得积分10
56秒前
小白完成签到 ,获得积分10
57秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798329
求助须知:如何正确求助?哪些是违规求助? 3343765
关于积分的说明 10317521
捐赠科研通 3060512
什么是DOI,文献DOI怎么找? 1679576
邀请新用户注册赠送积分活动 806711
科研通“疑难数据库(出版商)”最低求助积分说明 763295