塔菲尔方程
电催化剂
过电位
析氧
材料科学
分解水
海水
纳米片
电解水
电解
化学工程
无机化学
纳米技术
催化作用
电解质
化学
电化学
电极
海洋学
光催化
物理化学
生物化学
工程类
地质学
作者
Xueran Shen,Huanjun Li,Tiantian Ma,Qingze Jiao,Yun Zhao,Hansheng Li,Caihong Feng
出处
期刊:Small
[Wiley]
日期:2024-02-29
卷期号:20 (30)
被引量:29
标识
DOI:10.1002/smll.202310535
摘要
Abstract The exploiting electrocatalysts for water/seawater electrolysis with remarkable activity and outstanding durability at industrial grade current density remains a huge challenge. Herein, CoMoN x and Fe‐doped CoMoN x nanosheet arrays are in‐situ grown on Ni foam, which possess plentiful holes, multilevel heterostructure, and lavish Co 5.47 N/MoN@NF and Fe‐Co 5.47 N/MoN@NF interfaces. They require low overpotentials of 213 and 296 mV for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) under alkaline media to achieve current density of 800 mA cm −2 , respectively, and both possess low Tafel slopes (51.1 and 49.1 mV dec −1 ) and undiminished stability over 80 h. Moreover, the coupled Co 5.47 N/MoN@NF and Fe‐Co 5.47 N/MoN@NF electrolyzer requires low voltages of 1.735 V to yield 500 mA cm −2 in alkaline water. Notably, they also exhibit exceptional electrocatalytic properties in alkaline seawater (1.833 V@500 mA cm −2 ). The experimental studies and theoretical calculations verify that Fe doping does reduce the energy barrier from OH* to O* intermediates during OER process after catalyst reconstruction, and the non‐metallic N site from MoN exhibits the lowest theoretical overpotential. The splendid catalytic performance is attributed to the optimized local electron configuration and porous structure. This discovery provides a new design method toward low‐cost and excellent catalysts for water/seawater splitting to produce hydrogen.
科研通智能强力驱动
Strongly Powered by AbleSci AI