能量收集
谐波平衡
绕固定轴旋转
非线性系统
梁(结构)
转动能
频域
控制理论(社会学)
功率(物理)
转速
能量(信号处理)
声学
物理
光学
经典力学
计算机科学
数学
数学分析
量子力学
控制(管理)
人工智能
作者
Long Zhao,Ze-Qi Lu,Fei-Yang Zhang,Hailing Fu,Hu Ding,Li‐Qun Chen
标识
DOI:10.1016/j.ymssp.2024.111248
摘要
Various nonlinear energy harvesters that harvest energy from rotational motion have been investigated, but their performance at low frequencies is always deficiency. To realize the efficient harvesting of low frequency rotational motion energy, rotational nonlinear energy harvesting via an orthogonally arranged dual-beam is proposed for the first time. Based on the energy method, the electromechanical coupling equation of orthogonally arranged dual-beam in rotating motion is derived in detail. The harmonic balance method together with arc length continuation is employed to approximate the frequency response functions of the output power. To deeply explore the nonlinear dynamic behavior of the system, numerical analysis is conducted to obtain the output voltage and phase diagram in the time domain. Finally, the theoretical analysis results are verified through experiments. The results demonstrate that the vertical arrangement of nonlinear dual-beam in rotational motion effectively improved the energy harvesting efficiency at low frequencies, with excellent energy harvesting performance. This study provides an effective technical approach to energy harvesting for low frequency rotating systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI