Improving Image-Text Matching With Bidirectional Consistency of Cross-Modal Alignment

情态动词 计算机科学 一致性(知识库) 匹配(统计) 图像匹配 人工智能 图像(数学) 计算机视觉 模式识别(心理学) 数学 统计 化学 高分子化学
作者
Zhe Li,Lei Zhang,Kun Zhang,Yongdong Zhang,Zhendong Mao
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (7): 6590-6607 被引量:3
标识
DOI:10.1109/tcsvt.2024.3369656
摘要

Image-text matching is a fundamental task in bridging the semantics between vision and language. The key challenge lies in establishing accurate alignment between two heterogeneous modalities. Existing cross-modal fine-grained matching methods normally include two alignment directions, "word to region" and "region to word", and the overall image-text similarity is calculated from the alignments. However, the alignment of these two directions is typically independent, that is, the alignment of "word to region" and "region to word" is irrelevant, so the alignment consistency cannot be guaranteed in two directions, which inevitably introduces inconsistent alignments, leading to potential inaccurate image-text matching results. In this paper, we propose a novel Bidirectional cOnsistency netwOrks for cross-Modal alignment (BOOM), which achieves more accurate cross-modal semantic alignments by imposing explicit consistency constraints in both directions. Specifically, according to three aspects reflected by alignment consistency, i.e ., significance, wholeness, and alignment orderliness, we design a novel systematic multi-granularity consistency constraints: point-wise consistency, which enforces consistency of the most significant single word item in bidirectional alignments; set-wise consistency, which maintains more comprehensive and accurate bidirectional entire alignment values consistent and order-wise consistency, which ensures order consistency of bidirectional alignment results. Bidirectional cross-modal alignment between words and regions is corrected from three different perspectives: maximum, distribution, and order. Extensive experiments on two benchmarks, i.e ., Flickr30K and MS-COCO, demonstrate that our BOOM achieves state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助zheng采纳,获得10
1秒前
rrrr发布了新的文献求助10
1秒前
竹夕完成签到 ,获得积分10
2秒前
发发发发布了新的文献求助30
2秒前
lllllll完成签到,获得积分10
2秒前
苇一完成签到,获得积分10
3秒前
chase完成签到,获得积分10
3秒前
DHY完成签到,获得积分10
3秒前
CipherSage应助科学家采纳,获得10
4秒前
xiaozhiok发布了新的文献求助10
4秒前
4秒前
munantianxia发布了新的文献求助10
5秒前
天天快乐应助wang采纳,获得10
5秒前
科研通AI5应助ardejiang采纳,获得10
5秒前
5秒前
飘逸锦程完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
syf完成签到 ,获得积分10
8秒前
小蘑菇应助伊一采纳,获得10
8秒前
8秒前
9秒前
LLL完成签到 ,获得积分10
9秒前
9秒前
Jinnan发布了新的文献求助10
10秒前
年轻灯泡发布了新的文献求助10
10秒前
学霸宇大王完成签到 ,获得积分10
10秒前
10秒前
小王爱看文献完成签到 ,获得积分10
10秒前
10秒前
11秒前
珂伟完成签到,获得积分10
11秒前
李昕玥发布了新的文献求助10
11秒前
李日辉发布了新的文献求助10
11秒前
科研通AI5应助124采纳,获得10
11秒前
Stringgggg完成签到,获得积分10
12秒前
时尚俊驰发布了新的文献求助10
12秒前
12秒前
科研通AI5应助程雯慧采纳,获得10
12秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785225
求助须知:如何正确求助?哪些是违规求助? 3330781
关于积分的说明 10248184
捐赠科研通 3046175
什么是DOI,文献DOI怎么找? 1671900
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759868