清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

AI-Driven Optimization of Supply Chain and Logistics in Mechanical Engineering

供应链 计算机科学 制造工程 链条(单位) 工程类 业务 物理 营销 天文
作者
Dipak Mahat,K. Niranjan,Chikkala S K V R Naidu,S. B G Tilak Babu,M.Sangeeth Kumar,L. Natrayan
出处
期刊:2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON) 卷期号:: 1611-1616 被引量:26
标识
DOI:10.1109/upcon59197.2023.10434905
摘要

Mechanical engineering businesses rely heavily on effective supply chain and logistics management to increase their productivity, efficiency, and competitiveness. Recent years have seen the rise of artificial intelligence (AI) approaches as potent instruments for improving logistics and supply chain operations. This abstract gives a thorough introduction to Ant Colony Optimization (ACO), an AI method inspired by nature, and how it may be used to improve mechanical engineering's supply chain and logistics. The foraging strategies of ants served as inspiration for the development of Ant Colony Optimization (ACO), a metaheuristic algorithm. It has garnered a lot of interest as a useful tool for supply chain and logistics optimization because of its capacity to tackle difficult optimization challenges. Inventory management, transportation routing, production scheduling, and demand forecasting are just some of the mechanical engineering problems that may be tackled with the help of ACO. Inventory optimization is a key use case for ACO in the context of mechanical engineering supply chain management. By modeling how ants locate food sources, ACO is able to ascertain optimum stock levels. To cut down on carrying costs and stockouts, it helps find the sweet spot between overstocking and understocking of raw materials and finished goods. Likewise, transportation route optimization is greatly aided by ACO. Transporting both inputs and outputs quickly and cheaply is crucial for factories. Taking into account variables like traffic, fuel prices, and delivery windows, ACO can determine the most efficient routes for trucks. This not only improves customer satisfaction through on-time deliveries but also decreases transportation expenses. Mechanical engineers may also use ACO to enhance production scheduling. Algorithms for Achieving Maximum Efficiency (ACOs) may plan the flow of production such that downtime, wasted materials, and lost revenue are kept to a minimum. Mechanical engineering firms may boost output and shorten manufacturing times by optimizing their production plans. Despite the inherent uncertainty in demand forecasting, ACO can improve prediction accuracy. Algorithms for adaptive costing and optimization (ACO) can aid mechanical engineering companies in making better judgments on production volumes and inventory levels by assessing past demand data and continuously revising forecasts based on real-time information. Overproduction and underproduction are avoided, resulting in cost savings and better service to customers. ACO may also be utilized to improve the process of finding and working with vendors. It may take into account several criteria, including supplier dependability, cost, and turnaround time, to select the most suitable vendors for mechanical engineering businesses. In addition to lowering material acquisition costs, this also guarantees a steady supply of high-quality raw materials. In conclusion, ACO-driven AI optimization of mechanical engineering's supply chain and logistics has several advantages, including lower costs, more efficiency, and happier clients. Companies in the mechanical engineering sector can gain an edge by implementing ACO algorithms into their inventory management, transportation routing, production scheduling, demand forecasting, and supplier selection processes. To remain competitive and resilient in the ever-changing area of mechanical engineering, the use of AI techniques like ACO will become increasingly vital as technology progresses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助科研通管家采纳,获得10
2秒前
唐泽雪穗应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
唐泽雪穗应助科研通管家采纳,获得10
2秒前
唐泽雪穗应助科研通管家采纳,获得10
2秒前
酷波er应助金启维采纳,获得10
17秒前
24秒前
Sunny完成签到,获得积分10
30秒前
金启维发布了新的文献求助10
31秒前
房天川完成签到 ,获得积分10
1分钟前
智者雨人完成签到 ,获得积分10
1分钟前
简单的冬瓜完成签到,获得积分10
1分钟前
Neko完成签到,获得积分10
1分钟前
sunny心晴完成签到 ,获得积分10
1分钟前
阜睿完成签到 ,获得积分10
1分钟前
唐泽雪穗应助科研通管家采纳,获得10
2分钟前
唐泽雪穗应助科研通管家采纳,获得10
2分钟前
唐泽雪穗应助科研通管家采纳,获得10
2分钟前
唐泽雪穗应助科研通管家采纳,获得10
2分钟前
唐泽雪穗应助科研通管家采纳,获得10
2分钟前
唐泽雪穗应助科研通管家采纳,获得10
2分钟前
唐泽雪穗应助科研通管家采纳,获得10
2分钟前
唐泽雪穗应助科研通管家采纳,获得10
2分钟前
唐泽雪穗应助科研通管家采纳,获得10
2分钟前
唐泽雪穗应助科研通管家采纳,获得10
2分钟前
Aixia完成签到,获得积分10
2分钟前
Duduk完成签到 ,获得积分10
2分钟前
路路完成签到 ,获得积分10
2分钟前
忧伤的绍辉完成签到 ,获得积分10
2分钟前
王大橘完成签到 ,获得积分10
2分钟前
卫卫完成签到 ,获得积分10
2分钟前
诺亚方舟哇哈哈完成签到 ,获得积分0
2分钟前
忧郁如柏完成签到,获得积分10
2分钟前
尉迟明风完成签到 ,获得积分10
2分钟前
雨后完成签到 ,获得积分10
3分钟前
jlwang完成签到,获得积分10
3分钟前
繁星背后完成签到 ,获得积分10
3分钟前
Ziqingserra完成签到 ,获得积分10
3分钟前
细心的语蓉完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4852084
求助须知:如何正确求助?哪些是违规求助? 4150445
关于积分的说明 12857032
捐赠科研通 3898613
什么是DOI,文献DOI怎么找? 2142558
邀请新用户注册赠送积分活动 1162308
关于科研通互助平台的介绍 1062646