Coiled-coil domains are sufficient to drive liquid-liquid phase separation in protein models

电磁线圈 液态液体 相(物质) 色谱法 螺旋线圈 分离(统计) 液相 材料科学 化学 物理 计算机科学 热力学 生物化学 有机化学 量子力学 机器学习
作者
Dominique Ramirez,Loren E. Hough,Michael R. Shirts
出处
期刊:Biophysical Journal [Elsevier BV]
卷期号:123 (6): 703-717 被引量:10
标识
DOI:10.1016/j.bpj.2024.02.007
摘要

Abstract

Liquid-liquid phase separation (LLPS) is thought to be a main driving force in the formation of membraneless organelles. Examples of such organelles include the centrosome, central spindle, and stress granules. Recently, it has been shown that coiled-coil (CC) proteins, such as the centrosomal proteins pericentrin, spd-5, and centrosomin, might be capable of LLPS. CC domains have physical features that could make them the drivers of LLPS, but it is unknown if they play a direct role in the process. We developed a coarse-grained simulation framework for investigating the LLPS propensity of CC proteins, in which interactions that support LLPS arise solely from CC domains. We show, using this framework, that the physical features of CC domains are sufficient to drive LLPS of proteins. The framework is specifically designed to investigate how the number of CC domains, as well as the multimerization state of CC domains, can affect LLPS. We show that small model proteins with as few as two CC domains can phase separate. Increasing the number of CC domains up to four per protein can somewhat increase LLPS propensity. We demonstrate that trimer-forming and tetramer-forming CC domains have a dramatically higher LLPS propensity than dimer-forming coils, which shows that multimerization state has a greater effect on LLPS than the number of CC domains per protein. These data support the hypothesis of CC domains as drivers of protein LLPS, and have implications in future studies to identify the LLPS-driving regions of centrosomal and central spindle proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
天天摸鱼完成签到,获得积分10
1秒前
酷酷草莓发布了新的文献求助10
1秒前
Jasper应助布吉岛采纳,获得10
3秒前
清枫发布了新的文献求助10
4秒前
strug783完成签到,获得积分10
4秒前
cc完成签到 ,获得积分10
6秒前
大模型应助Math4396采纳,获得10
6秒前
科研通AI5应助稳重羽毛采纳,获得10
8秒前
动次打次完成签到,获得积分20
9秒前
9秒前
9秒前
无花果应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
ZhouYW应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
852应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
obcx完成签到,获得积分10
11秒前
orixero应助科研通管家采纳,获得100
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
动次打次发布了新的文献求助10
13秒前
酷酷草莓完成签到,获得积分10
14秒前
李玲玲完成签到,获得积分10
14秒前
木木发布了新的文献求助30
15秒前
16秒前
盼盼完成签到 ,获得积分10
17秒前
19秒前
月是故乡明完成签到,获得积分20
20秒前
Math4396发布了新的文献求助10
22秒前
未青易完成签到 ,获得积分10
23秒前
23秒前
二十八完成签到 ,获得积分10
25秒前
赘婿应助高山我梦采纳,获得10
25秒前
SciGPT应助月是故乡明采纳,获得10
25秒前
jenningseastera应助Claudplz采纳,获得10
26秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797758
求助须知:如何正确求助?哪些是违规求助? 3343236
关于积分的说明 10315046
捐赠科研通 3059985
什么是DOI,文献DOI怎么找? 1679200
邀请新用户注册赠送积分活动 806411
科研通“疑难数据库(出版商)”最低求助积分说明 763150