Implementation of Convolutional Neural Networks in Memristor Crossbar Arrays with Binary Activation and Weight Quantization

横杆开关 记忆电阻器 计算机科学 卷积神经网络 量化(信号处理) 二进制数 人工神经网络 算法 计算机硬件 电子工程 并行计算 人工智能 数学 算术 工程类 电信
作者
Jinwoo Park,Sungjoon Kim,Min Song,Sangwook Youn,Kyuree Kim,Tae‐Hyeon Kim,Hyungjin Kim
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (1): 1054-1065 被引量:17
标识
DOI:10.1021/acsami.3c13775
摘要

We propose a hardware-friendly architecture of a convolutional neural network using a 32 × 32 memristor crossbar array having an overshoot suppression layer. The gradual switching characteristics in both set and reset operations enable the implementation of a 3-bit multilevel operation in a whole array that can be utilized as 16 kernels. Moreover, a binary activation function mapped to the read voltage and ground is introduced to evaluate the result of training with a boundary of 0.5 and its estimated gradient. Additionally, we adopt a fixed kernel method, where inputs are sequentially applied to a crossbar array with a differential memristor pair scheme, reducing unused cell waste. The binary activation has robust characteristics against device state variations, and a neuron circuit is experimentally demonstrated on a customized breadboard. Thanks to the analogue switching characteristics of the memristor device, the accurate vector–matrix multiplication (VMM) operations can be experimentally demonstrated by combining sequential inputs and the weights obtained through tuning operations in the crossbar array. In addition, the feature images extracted by VMM during the hardware inference operations on 100 test samples are classified, and the classification performance by off-chip training is compared with the software results. Finally, inference results depending on the tolerance are statistically verified through several tuning cycles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chart发布了新的文献求助10
刚刚
隐形曼青应助戚薇采纳,获得10
1秒前
书岩完成签到,获得积分10
1秒前
CodeCraft应助柒柒采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
Lucas应助斐然诗采纳,获得10
2秒前
冰魂应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得30
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
3秒前
冰魂应助科研通管家采纳,获得20
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
louge完成签到,获得积分20
3秒前
4秒前
Jack发布了新的文献求助20
4秒前
6秒前
老迟到的友菱完成签到,获得积分10
7秒前
7秒前
dzh完成签到,获得积分10
7秒前
huhu发布了新的文献求助10
7秒前
7秒前
蓝蓝蓝完成签到,获得积分10
9秒前
无问西东完成签到,获得积分10
9秒前
YingLi完成签到,获得积分10
10秒前
10秒前
月月发布了新的文献求助10
10秒前
10秒前
XBP发布了新的文献求助10
12秒前
12秒前
12秒前
思源应助huhu采纳,获得10
12秒前
13秒前
Tao完成签到,获得积分10
13秒前
流星发布了新的文献求助10
13秒前
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808716
求助须知:如何正确求助?哪些是违规求助? 3353476
关于积分的说明 10365281
捐赠科研通 3069664
什么是DOI,文献DOI怎么找? 1685735
邀请新用户注册赠送积分活动 810675
科研通“疑难数据库(出版商)”最低求助积分说明 766286