EI-MVSNet: Epipolar-Guided Multi-View Stereo Network With Interval-Aware Label

极线几何 人工智能 稳健性(进化) 计算机科学 体积热力学 基本矩阵(线性微分方程) 区间(图论) 推论 计算机视觉 数学 图像(数学) 量子力学 生物化学 基因 组合数学 物理 数学分析 化学
作者
Jiahao Chang,Jianfeng He,Tianzhu Zhang,Jiyang Yu,Feng Wu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 753-766
标识
DOI:10.1109/tip.2023.3347929
摘要

Recent learning-based methods demonstrate their strong ability to estimate depth for multi-view stereo reconstruction. However, most of these methods directly extract features via regular or deformable convolutions, and few works consider the alignment of the receptive fields between views while constructing the cost volume. Through analyzing the constraint and inference of previous MVS networks, we find that there are still some shortcomings that hinder the performance. To deal with the above issues, we propose an Epipolar-Guided Multi-View Stereo Network with Interval-Aware Label (EI-MVSNet), which includes an epipolar-guided volume construction module and an interval-aware depth estimation module in a unified architecture for MVS. The proposed EI-MVSNet enjoys several merits. First, in the epipolar-guided volume construction module, we construct cost volume with features from aligned receptive fields between different pairs of reference and source images via epipolar-guided convolutions, which take rotation and scale changes into account. Second, in the interval-aware depth estimation module, we attempt to supervise the cost volume directly and make depth estimation independent of extraneous values by perceiving the upper and lower boundaries, which can achieve fine-grained predictions and enhance the reasoning ability of the network. Extensive experimental results on two standard benchmarks demonstrate that our EI-MVSNet performs favorably against state-of-the-art MVS methods. Specifically, our EI-MVSNet ranks 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dddd完成签到,获得积分10
刚刚
海迪完成签到,获得积分10
1秒前
姜姜完成签到 ,获得积分10
2秒前
2秒前
背书强完成签到 ,获得积分10
3秒前
chenzao完成签到 ,获得积分10
3秒前
4秒前
4秒前
4秒前
小老板完成签到,获得积分10
6秒前
开心发布了新的文献求助10
7秒前
星辰大海应助KanmenRider采纳,获得10
7秒前
8秒前
科研通AI5应助出水的芙蓉采纳,获得30
8秒前
9秒前
和谐煜祺完成签到,获得积分10
9秒前
yj发布了新的文献求助10
10秒前
Rain完成签到,获得积分10
10秒前
12秒前
Captain发布了新的文献求助10
14秒前
小次之山发布了新的文献求助10
15秒前
15秒前
朱梅琳发布了新的文献求助10
16秒前
16秒前
传奇3应助Qovn采纳,获得10
17秒前
Rain发布了新的文献求助30
17秒前
17秒前
19秒前
ding应助期末王采纳,获得10
19秒前
yangluyao发布了新的文献求助10
20秒前
Ryan发布了新的文献求助10
22秒前
24秒前
7777完成签到,获得积分10
25秒前
123发布了新的文献求助10
25秒前
地精术士完成签到,获得积分10
25秒前
25秒前
YOLO完成签到,获得积分10
26秒前
26秒前
KanmenRider发布了新的文献求助10
29秒前
29秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789499
求助须知:如何正确求助?哪些是违规求助? 3334519
关于积分的说明 10270310
捐赠科研通 3050937
什么是DOI,文献DOI怎么找? 1674263
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742