MS2CANet: Multiscale Spatial–Spectral Cross-Modal Attention Network for Hyperspectral Image and LiDAR Classification

高光谱成像 计算机科学 激光雷达 多光谱图像 空间分析 人工智能 遥感 卷积(计算机科学) 情态动词 卷积神经网络 模式识别(心理学) 人工神经网络 地理 化学 高分子化学
作者
Xianghai Wang,Junheng Zhu,Yining Feng,Lu Wang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5 被引量:14
标识
DOI:10.1109/lgrs.2024.3350633
摘要

The acquisition of multisource remote-sensing (RS) data has become more and more convenient due to the boom and innovation of RS imaging technology. The fusion and classification of hyperspectral images (HSIs) and Light Detection and Ranging (LiDAR) data has become a research hotspot because of their excellent complementarity and the vigorous development of deep learning (DL) provides effective methods. Most of the existing methods based on convolution neural networks (CNNs) have fixed convolution kernels, making it difficult to extract multiscale detailed features. In this letter, we propose a multiscale pyramid fusion framework based on spatial–spectral cross-modal attention (S2CA) for HSIs and LiDAR classification, which has strong multiscale information learning ability, especially in areas with complex information changes, thereby improving classification accuracy. Multiscale pyramid convolution is used to extract multiscale features, and an effective feature recalibration (EFR) module is used to enhance features and suppress useless information at each scale. To increase the interactivity of information between modes, we propose an S2CA module, which uses the features of different modes to enhance each other. Three real public datasets are used for the experiment. Compared with the existing advanced methods, the proposed method achieves the best results. The source code of the multiscale S2CA network (MS2CANet) will be public at https://github.com/junhengzhu/MS2CANet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
五档张诊人完成签到,获得积分10
刚刚
石龙子发布了新的文献求助10
刚刚
WJN发布了新的文献求助10
刚刚
完美世界应助weiweiwu12采纳,获得10
刚刚
1秒前
1秒前
1秒前
2秒前
2秒前
幽默亦凝发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
乐观寻绿完成签到,获得积分10
3秒前
NexusExplorer应助快乐难敌采纳,获得10
3秒前
zhong完成签到,获得积分10
4秒前
白白发布了新的文献求助10
5秒前
5秒前
曾经的借过完成签到,获得积分10
5秒前
5秒前
李鹏飞发布了新的文献求助10
5秒前
6秒前
共渡发布了新的文献求助10
6秒前
6秒前
tangli发布了新的文献求助30
6秒前
彭于晏应助落寞砖家采纳,获得10
6秒前
vergegung完成签到,获得积分20
6秒前
ALLUDO发布了新的文献求助10
7秒前
7秒前
Mister.WangK发布了新的文献求助10
7秒前
坚强的铅笔完成签到 ,获得积分10
8秒前
司空踏歌应助白白采纳,获得10
9秒前
ww发布了新的文献求助10
9秒前
10秒前
愉快竺应助felix采纳,获得50
11秒前
11秒前
zyt完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816802
求助须知:如何正确求助?哪些是违规求助? 3360159
关于积分的说明 10407045
捐赠科研通 3078172
什么是DOI,文献DOI怎么找? 1690613
邀请新用户注册赠送积分活动 813964
科研通“疑难数据库(出版商)”最低求助积分说明 767910