Effective hyper-connectivity network construction and learning: Application to major depressive disorder identification

成对比较 鉴定(生物学) 计算机科学 机器学习 人工智能 特征(语言学) 功能磁共振成像 模式识别(心理学) 超图 静息状态功能磁共振成像 认知 心理学 神经科学 数学 离散数学 哲学 语言学 生物 植物
作者
Jingyu Liu,Wenxin Yang,Yulan Ma,Qunxi Dong,Yang Li,Bin Hu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:171: 108069-108069 被引量:8
标识
DOI:10.1016/j.compbiomed.2024.108069
摘要

Functional connectivity (FC) derived from resting-state fMRI (rs-fMRI) is a primary approach for identifying brain diseases, but it is limited to capturing the pairwise correlation between regions-of-interest (ROIs) in the brain. Thus, hyper-connectivity which describes the higher-order relationship among multiple ROIs is receiving increasing attention. However, most hyper-connectivity methods overlook the directionality of connections. The direction of information flow constitutes a pivotal factor in shaping brain activity and cognitive processes. Neglecting this directional aspect can lead to an incomplete understanding of high-order interactions within the brain. To this end, we propose a novel effective hyper-connectivity (EHC) network that integrates direction detection and hyper-connectivity modeling. It characterizes the high-order directional information flow among multiple ROIs, providing a more comprehensive understanding of brain activity. Then, we develop a directed hypergraph convolutional network (DHGCN) to acquire deep representations from EHC network and functional indicators of ROIs. In contrast to conventional hypergraph convolutional networks designed for undirected hypergraphs, DHGCN is specifically tailored to handle directed hypergraph data structures. Moreover, unlike existing methods that primarily focus on fMRI time series, our proposed DHGCN model also incorporates multiple functional indicators, providing a robust framework for feature learning. Finally, deep representations generated via DHGCN, combined with demographic factors, are used for major depressive disorder (MDD) identification. Experimental results demonstrate that the proposed framework outperforms both FC and undirected hyper-connectivity models, as well as surpassing other state-of-the-art methods. The identification of EHC abnormalities through our framework can enhance the analysis of brain function in individuals with MDD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知性的寄真完成签到,获得积分10
刚刚
轶Y发布了新的文献求助30
1秒前
2秒前
不羁之魂发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
石榴姐姐完成签到,获得积分10
9秒前
光亮念文发布了新的文献求助10
10秒前
凶狠的白桃完成签到 ,获得积分10
12秒前
Liaee完成签到,获得积分10
13秒前
曦曦完成签到 ,获得积分10
14秒前
15秒前
李丽玲完成签到,获得积分10
15秒前
简单的铃铛完成签到 ,获得积分10
18秒前
shusen完成签到,获得积分10
19秒前
高源伯完成签到 ,获得积分10
20秒前
汉堡包应助zzn采纳,获得10
21秒前
24秒前
ddssa1988完成签到,获得积分10
25秒前
26秒前
27秒前
29秒前
一瓶可乐鱼完成签到,获得积分10
30秒前
ihei发布了新的文献求助10
30秒前
30秒前
Niniiii发布了新的文献求助10
31秒前
31秒前
Ec_w发布了新的文献求助10
32秒前
Lucas应助Bingtao_Lian采纳,获得10
32秒前
CipherSage应助科研通管家采纳,获得10
32秒前
Ava应助科研通管家采纳,获得10
32秒前
上官若男应助科研通管家采纳,获得10
32秒前
FashionBoy应助科研通管家采纳,获得10
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
丘比特应助科研通管家采纳,获得10
33秒前
Yuan应助科研通管家采纳,获得20
33秒前
天天快乐应助科研通管家采纳,获得10
33秒前
Siriya完成签到,获得积分10
33秒前
zzn发布了新的文献求助10
34秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793328
求助须知:如何正确求助?哪些是违规求助? 3338065
关于积分的说明 10288573
捐赠科研通 3054717
什么是DOI,文献DOI怎么找? 1676128
邀请新用户注册赠送积分活动 804144
科研通“疑难数据库(出版商)”最低求助积分说明 761757