Collaborative Enhancement of Consistency and Accuracy in US Diagnosis of Thyroid Nodules Using Large Language Models

医学 甲状腺结节 一致性(知识库) 医学诊断 介绍 接收机工作特性 恶性肿瘤 放射科 病理 人工智能 家庭医学 内科学 计算机科学
作者
Shaohong Wu,Wenjuan Tong,Ming‐De Li,Shunro Matsumoto,Xiao-Zhou Lu,Ze-Rong Huang,Xin-Xin Lin,Rui-Fang Lu,Ming‐De Lu,Li‐Da Chen,Wei Wang
出处
期刊:Radiology [Radiological Society of North America]
卷期号:310 (3) 被引量:46
标识
DOI:10.1148/radiol.232255
摘要

Background Large language models (LLMs) hold substantial promise for medical imaging interpretation. However, there is a lack of studies on their feasibility in handling reasoning questions associated with medical diagnosis. Purpose To investigate the viability of leveraging three publicly available LLMs to enhance consistency and diagnostic accuracy in medical imaging based on standardized reporting, with pathology as the reference standard. Materials and Methods US images of thyroid nodules with pathologic results were retrospectively collected from a tertiary referral hospital between July 2022 and December 2022 and used to evaluate malignancy diagnoses generated by three LLMs-OpenAI's ChatGPT 3.5, ChatGPT 4.0, and Google's Bard. Inter- and intra-LLM agreement of diagnosis were evaluated. Then, diagnostic performance, including accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC), was evaluated and compared for the LLMs and three interactive approaches: human reader combined with LLMs, image-to-text model combined with LLMs, and an end-to-end convolutional neural network model. Results A total of 1161 US images of thyroid nodules (498 benign, 663 malignant) from 725 patients (mean age, 42.2 years ± 14.1 [SD]; 516 women) were evaluated. ChatGPT 4.0 and Bard displayed substantial to almost perfect intra-LLM agreement (κ range, 0.65-0.86 [95% CI: 0.64, 0.86]), while ChatGPT 3.5 showed fair to substantial agreement (κ range, 0.36-0.68 [95% CI: 0.36, 0.68]). ChatGPT 4.0 had an accuracy of 78%-86% (95% CI: 76%, 88%) and sensitivity of 86%-95% (95% CI: 83%, 96%), compared with 74%-86% (95% CI: 71%, 88%) and 74%-91% (95% CI: 71%, 93%), respectively, for Bard. Moreover, with ChatGPT 4.0, the image-to-text-LLM strategy exhibited an AUC (0.83 [95% CI: 0.80, 0.85]) and accuracy (84% [95% CI: 82%, 86%]) comparable to those of the human-LLM interaction strategy with two senior readers and one junior reader and exceeding those of the human-LLM interaction strategy with one junior reader. Conclusion LLMs, particularly integrated with image-to-text approaches, show potential in enhancing diagnostic medical imaging. ChatGPT 4.0 was optimal for consistency and diagnostic accuracy when compared with Bard and ChatGPT 3.5. © RSNA, 2024
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭666发布了新的文献求助10
1秒前
桐桐应助ultramantaro采纳,获得10
1秒前
科研通AI5应助ultramantaro采纳,获得30
1秒前
今后应助Nn1采纳,获得10
1秒前
2秒前
2秒前
hezi发布了新的文献求助10
2秒前
Yan完成签到,获得积分10
4秒前
5秒前
科研通AI6应助YIDAN采纳,获得30
5秒前
闪电侠完成签到 ,获得积分10
7秒前
初一完成签到,获得积分20
8秒前
星辰发布了新的文献求助10
8秒前
99668完成签到,获得积分10
8秒前
九月完成签到,获得积分10
9秒前
米虫完成签到,获得积分10
10秒前
10秒前
hezi完成签到,获得积分10
11秒前
经纲完成签到 ,获得积分0
11秒前
游元稔完成签到 ,获得积分10
12秒前
李帅完成签到,获得积分10
12秒前
小垃圾发布了新的文献求助10
13秒前
14秒前
19秒前
自由天抒应助小潘同学采纳,获得10
21秒前
严锦强完成签到,获得积分10
21秒前
科研通AI6应助优美的世开采纳,获得10
21秒前
科研废物发布了新的文献求助10
21秒前
艾莎莎5114完成签到,获得积分10
22秒前
22秒前
木木林完成签到 ,获得积分10
23秒前
程瑶瑶瑶完成签到 ,获得积分10
26秒前
香蕉觅云应助空古悠浪采纳,获得10
27秒前
wanci应助火星上的幻梦采纳,获得10
27秒前
27秒前
28秒前
田様应助科研通管家采纳,获得10
30秒前
lan应助科研通管家采纳,获得10
30秒前
30秒前
小二郎应助科研通管家采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
La RSE en pratique 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4433325
求助须知:如何正确求助?哪些是违规求助? 3909229
关于积分的说明 12142718
捐赠科研通 3555176
什么是DOI,文献DOI怎么找? 1951261
邀请新用户注册赠送积分活动 991210
科研通“疑难数据库(出版商)”最低求助积分说明 887033