Collaborative Enhancement of Consistency and Accuracy in US Diagnosis of Thyroid Nodules Using Large Language Models

医学 甲状腺结节 一致性(知识库) 医学诊断 介绍 接收机工作特性 恶性肿瘤 放射科 病理 人工智能 家庭医学 内科学 计算机科学
作者
Shaohong Wu,Wenjuan Tong,Ming‐De Li,Shunro Matsumoto,Xiao-Zhou Lu,Ze-Rong Huang,Xin-Xin Lin,Rui-Fang Lu,Ming‐De Lu,Li‐Da Chen,Wei Wang
出处
期刊:Radiology [Radiological Society of North America]
卷期号:310 (3) 被引量:52
标识
DOI:10.1148/radiol.232255
摘要

Background Large language models (LLMs) hold substantial promise for medical imaging interpretation. However, there is a lack of studies on their feasibility in handling reasoning questions associated with medical diagnosis. Purpose To investigate the viability of leveraging three publicly available LLMs to enhance consistency and diagnostic accuracy in medical imaging based on standardized reporting, with pathology as the reference standard. Materials and Methods US images of thyroid nodules with pathologic results were retrospectively collected from a tertiary referral hospital between July 2022 and December 2022 and used to evaluate malignancy diagnoses generated by three LLMs-OpenAI's ChatGPT 3.5, ChatGPT 4.0, and Google's Bard. Inter- and intra-LLM agreement of diagnosis were evaluated. Then, diagnostic performance, including accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC), was evaluated and compared for the LLMs and three interactive approaches: human reader combined with LLMs, image-to-text model combined with LLMs, and an end-to-end convolutional neural network model. Results A total of 1161 US images of thyroid nodules (498 benign, 663 malignant) from 725 patients (mean age, 42.2 years ± 14.1 [SD]; 516 women) were evaluated. ChatGPT 4.0 and Bard displayed substantial to almost perfect intra-LLM agreement (κ range, 0.65-0.86 [95% CI: 0.64, 0.86]), while ChatGPT 3.5 showed fair to substantial agreement (κ range, 0.36-0.68 [95% CI: 0.36, 0.68]). ChatGPT 4.0 had an accuracy of 78%-86% (95% CI: 76%, 88%) and sensitivity of 86%-95% (95% CI: 83%, 96%), compared with 74%-86% (95% CI: 71%, 88%) and 74%-91% (95% CI: 71%, 93%), respectively, for Bard. Moreover, with ChatGPT 4.0, the image-to-text-LLM strategy exhibited an AUC (0.83 [95% CI: 0.80, 0.85]) and accuracy (84% [95% CI: 82%, 86%]) comparable to those of the human-LLM interaction strategy with two senior readers and one junior reader and exceeding those of the human-LLM interaction strategy with one junior reader. Conclusion LLMs, particularly integrated with image-to-text approaches, show potential in enhancing diagnostic medical imaging. ChatGPT 4.0 was optimal for consistency and diagnostic accuracy when compared with Bard and ChatGPT 3.5. © RSNA, 2024
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
1秒前
WATQ发布了新的文献求助10
2秒前
2秒前
2秒前
xzj发布了新的文献求助10
2秒前
3秒前
3秒前
研友_VZG7GZ应助自由小狗采纳,获得30
3秒前
张子旭完成签到,获得积分10
3秒前
3秒前
淡定冰真完成签到,获得积分10
3秒前
4秒前
4秒前
李爱国应助tll采纳,获得30
4秒前
英勇的蜡烛完成签到,获得积分10
4秒前
隐形曼青应助微眠采纳,获得10
5秒前
光亮的胡萝卜完成签到,获得积分10
5秒前
_蝴蝶小姐完成签到,获得积分10
5秒前
skittles完成签到,获得积分10
6秒前
6秒前
深情安青应助胖胖胖胖采纳,获得10
6秒前
Enron完成签到,获得积分10
6秒前
weige完成签到,获得积分10
6秒前
yangsisi完成签到,获得积分10
6秒前
小易发布了新的文献求助30
7秒前
白衣卿相发布了新的文献求助10
7秒前
joji发布了新的文献求助10
8秒前
风趣问蕊发布了新的文献求助30
8秒前
田博文发布了新的文献求助10
8秒前
8秒前
9秒前
xi_xiya完成签到,获得积分10
10秒前
liaoliao完成签到 ,获得积分10
10秒前
hh完成签到,获得积分10
10秒前
wsm完成签到 ,获得积分10
11秒前
cc发布了新的文献求助10
12秒前
烨霖完成签到,获得积分10
12秒前
MOMO发布了新的文献求助20
13秒前
FashionBoy应助大意的火车采纳,获得10
13秒前
天天快乐应助俭朴采柳采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5249575
求助须知:如何正确求助?哪些是违规求助? 4414099
关于积分的说明 13739694
捐赠科研通 4285351
什么是DOI,文献DOI怎么找? 2351560
邀请新用户注册赠送积分活动 1348336
关于科研通互助平台的介绍 1308057