Collaborative Enhancement of Consistency and Accuracy in US Diagnosis of Thyroid Nodules Using Large Language Models

医学 甲状腺结节 一致性(知识库) 医学诊断 介绍 接收机工作特性 恶性肿瘤 放射科 病理 人工智能 家庭医学 内科学 计算机科学
作者
Shaohong Wu,Wenjuan Tong,Ming‐De Li,Shunro Matsumoto,Xiao-Zhou Lu,Ze-Rong Huang,Xin-Xin Lin,Rui-Fang Lu,Ming‐De Lu,Li‐Da Chen,Wei Wang
出处
期刊:Radiology [Radiological Society of North America]
卷期号:310 (3) 被引量:25
标识
DOI:10.1148/radiol.232255
摘要

Background Large language models (LLMs) hold substantial promise for medical imaging interpretation. However, there is a lack of studies on their feasibility in handling reasoning questions associated with medical diagnosis. Purpose To investigate the viability of leveraging three publicly available LLMs to enhance consistency and diagnostic accuracy in medical imaging based on standardized reporting, with pathology as the reference standard. Materials and Methods US images of thyroid nodules with pathologic results were retrospectively collected from a tertiary referral hospital between July 2022 and December 2022 and used to evaluate malignancy diagnoses generated by three LLMs-OpenAI's ChatGPT 3.5, ChatGPT 4.0, and Google's Bard. Inter- and intra-LLM agreement of diagnosis were evaluated. Then, diagnostic performance, including accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC), was evaluated and compared for the LLMs and three interactive approaches: human reader combined with LLMs, image-to-text model combined with LLMs, and an end-to-end convolutional neural network model. Results A total of 1161 US images of thyroid nodules (498 benign, 663 malignant) from 725 patients (mean age, 42.2 years ± 14.1 [SD]; 516 women) were evaluated. ChatGPT 4.0 and Bard displayed substantial to almost perfect intra-LLM agreement (κ range, 0.65-0.86 [95% CI: 0.64, 0.86]), while ChatGPT 3.5 showed fair to substantial agreement (κ range, 0.36-0.68 [95% CI: 0.36, 0.68]). ChatGPT 4.0 had an accuracy of 78%-86% (95% CI: 76%, 88%) and sensitivity of 86%-95% (95% CI: 83%, 96%), compared with 74%-86% (95% CI: 71%, 88%) and 74%-91% (95% CI: 71%, 93%), respectively, for Bard. Moreover, with ChatGPT 4.0, the image-to-text-LLM strategy exhibited an AUC (0.83 [95% CI: 0.80, 0.85]) and accuracy (84% [95% CI: 82%, 86%]) comparable to those of the human-LLM interaction strategy with two senior readers and one junior reader and exceeding those of the human-LLM interaction strategy with one junior reader. Conclusion LLMs, particularly integrated with image-to-text approaches, show potential in enhancing diagnostic medical imaging. ChatGPT 4.0 was optimal for consistency and diagnostic accuracy when compared with Bard and ChatGPT 3.5. © RSNA, 2024
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山山而川发布了新的文献求助10
2秒前
洪亮完成签到,获得积分0
3秒前
吴钰哲完成签到,获得积分10
3秒前
山山而川完成签到,获得积分20
9秒前
10秒前
奥斯卡完成签到,获得积分10
11秒前
12秒前
14秒前
14秒前
Sunday发布了新的文献求助10
15秒前
pluto应助xiaobai采纳,获得10
16秒前
浅暖发布了新的文献求助10
17秒前
17秒前
聪慧雪糕发布了新的文献求助10
20秒前
闾丘惜萱完成签到,获得积分10
20秒前
wwwcz发布了新的文献求助10
20秒前
汉堡包应助leena采纳,获得10
23秒前
FashionBoy应助吴钰哲采纳,获得10
25秒前
27秒前
聪慧雪糕发布了新的文献求助10
31秒前
霍师傅发布了新的文献求助10
31秒前
wwwcz完成签到,获得积分10
36秒前
38秒前
怡然的怀莲完成签到 ,获得积分20
39秒前
聪慧雪糕发布了新的文献求助10
44秒前
唐瑚芦完成签到 ,获得积分10
51秒前
感动白开水完成签到,获得积分10
51秒前
科研通AI5应助勤奋向真采纳,获得10
53秒前
58秒前
momo发布了新的文献求助10
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
彭于晏应助科研通管家采纳,获得30
1分钟前
1分钟前
1分钟前
NexusExplorer应助junjun采纳,获得10
1分钟前
1分钟前
zzz完成签到,获得积分10
1分钟前
pan完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779780
求助须知:如何正确求助?哪些是违规求助? 3325232
关于积分的说明 10222026
捐赠科研通 3040376
什么是DOI,文献DOI怎么找? 1668788
邀请新用户注册赠送积分活动 798776
科研通“疑难数据库(出版商)”最低求助积分说明 758549