Prediction of nosocomial infections associated with surgical interventions

心理干预 背景(考古学) 计算机科学 医疗保健 重症监护医学 质量(理念) 医学 医疗急救 护理部 古生物学 哲学 认识论 经济 生物 经济增长
作者
Diogo Fernandes,Sara Cardoso,João M. D. Miranda,Júlio Duarte,Manuel Filipe Santos
出处
期刊:Procedia Computer Science [Elsevier]
卷期号:231: 433-438
标识
DOI:10.1016/j.procs.2023.12.230
摘要

Nosocomial infections represent an ongoing challenge to healthcare quality and patient safety, negatively impacting clinical outcomes and increasing the burden on healthcare systems. Thus, controlling this type of infection plays a very important role in ensuring a better quality of life for patients. Although the control and prevention measures for these infections are well defined, their signaling and detection is carried out manually and sometimes late, which compromises the health status of patients and everyone around them. In this context, this study emerged with the aim of exploring the potential of data mining techniques to predict the occurrence of nosocomial infections, with a specific focus on infections associated with surgical interventions. Using datasets for the period between 2018 and 2022, sourced from a Portuguese hospital and duly anonymized to protect patient privacy, several classification algorithms and data balancing techniques were analyzed to deal with the uneven nature of the data and the presence of minority classes. Among the algorithms and balancing techniques used, it was found that the Random Forest algorithm combined with the Oversampling technique showed superior performance in identifying cases of nosocomial infections associated with surgical interventions. The results of this study highlight the importance of collaboration between medicine and technology, indicating that the integration of data mining techniques can prove to be valuable tools to improve clinical decision-making and infection management in surgical context.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助科研通管家采纳,获得10
刚刚
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
草花丝带应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
陈志刚应助科研通管家采纳,获得20
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
金珂羽完成签到,获得积分10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
LiuYinglong关注了科研通微信公众号
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
spencerleo完成签到,获得积分20
2秒前
2秒前
邵初蓝完成签到,获得积分10
2秒前
端庄千琴完成签到,获得积分10
2秒前
高兴断秋完成签到,获得积分10
3秒前
shannian完成签到,获得积分10
3秒前
鳕鱼完成签到,获得积分10
4秒前
4秒前
5秒前
Lemenchichi完成签到,获得积分10
5秒前
殷启维完成签到,获得积分10
6秒前
杨远杰完成签到 ,获得积分10
6秒前
Owen应助风清扬采纳,获得10
6秒前
7秒前
L03完成签到,获得积分10
7秒前
qql发布了新的文献求助10
7秒前
熊猫水饺发布了新的文献求助10
8秒前
万能图书馆应助记录吐吐采纳,获得10
8秒前
qweerrtt完成签到,获得积分10
8秒前
谦让汲完成签到,获得积分10
9秒前
华仔应助于生有你采纳,获得10
9秒前
TTLOVEDXX完成签到,获得积分10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
履带车辆的设计与计算 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4486551
求助须知:如何正确求助?哪些是违规求助? 3941612
关于积分的说明 12222627
捐赠科研通 3597883
什么是DOI,文献DOI怎么找? 1978842
邀请新用户注册赠送积分活动 1015708
科研通“疑难数据库(出版商)”最低求助积分说明 908965