Development of a machine learning-based model to predict hepatic inflammation in chronic hepatitis B patients with concurrent hepatic steatosis: a cohort study

医学 队列 脂肪变性 内科学 接收机工作特性 回顾性队列研究 胃肠病学 慢性肝炎 炎症 免疫学 病毒
作者
Fajuan Rui,Yee Hui Yeo,Liang Xu,Qi Zheng,Xiao–Ming Xu,Wenjing Ni,Youwen Tan,Qinglei Zeng,Zebao He,Xiaorong Tian,Qi Xue,Yuanwang Qiu,Chuanwu Zhu,Weimao Ding,Jian Wang,Rui Huang,Yayun Xu,Yunliang Chen,Junqing Fan,Zhiwen Fan
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:68: 102419-102419 被引量:11
标识
DOI:10.1016/j.eclinm.2023.102419
摘要

Summary

Background

With increasingly prevalent coexistence of chronic hepatitis B (CHB) and hepatic steatosis (HS), simple, non-invasive diagnostic methods to accurately assess the severity of hepatic inflammation are needed. We aimed to build a machine learning (ML) based model to detect hepatic inflammation in patients with CHB and concurrent HS.

Methods

We conducted a multicenter, retrospective cohort study in China. Treatment-naive CHB patients with biopsy-proven HS between April 2004 and September 2022 were included. The optimal features for model development were selected by SHapley Additive explanations, and an ML algorithm with the best accuracy to diagnose moderate to severe hepatic inflammation (Scheuer's system ≥ G3) was determined and assessed by decision curve analysis (DCA) and calibration curve. This study is registered with ClinicalTrials.gov (NCT05766449).

Findings

From a pool of 1,787 treatment-naive patients with CHB and HS across eleven hospitals, 689 patients from nine of these hospitals were chosen for the development of the diagnostic model. The remaining two hospitals contributed to two independent external validation cohorts, comprising 509 patients in validation cohort 1 and 589 in validation cohort 2. Eleven features regarding inflammation, hepatic and metabolic functions were identified. The gradient boosting classifier (GBC) model showed the best performance in predicting moderate to severe hepatic inflammation, with an area under the receiver operating characteristic curve (AUROC) of 0.86 (95% CI 0.83–0.88) in the training cohort, and 0.89 (95% CI 0.86–0.92), 0.76 (95% CI 0.73–0.80) in the first and second external validation cohorts, respectively. A publicly accessible web tool was generated for the model.

Interpretation

Using simple parameters, the GBC model predicted hepatic inflammation in CHB patients with concurrent HS. It holds promise for guiding clinical management and improving patient outcomes.

Funding

This research was supported by the National Natural Science Foundation of China (No. 82170609, 81970545), Natural Science Foundation of Shandong Province (Major Project) (No. ZR2020KH006), Natural Science Foundation of Jiangsu Province (No.BK20231118), Tianjin Key Medical Discipline (Specialty), Construction Project, TJYXZDXK-059B, Tianjin Health Science and Technology Project key discipline special, TJWJ2022XK034, and Research project of Chinese traditional medicine and Chinese traditional medicine combined with Western medicine of Tianjin municipal health and Family Planning Commission (2021022).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
月月月鸟伟完成签到,获得积分10
2秒前
MOS发布了新的文献求助10
3秒前
勤劳糜完成签到 ,获得积分10
4秒前
图图发布了新的文献求助30
5秒前
跳跃的语柔完成签到 ,获得积分10
9秒前
None完成签到 ,获得积分10
9秒前
13秒前
神内小天使完成签到,获得积分10
13秒前
章鱼哥想毕业完成签到 ,获得积分10
16秒前
zhaoshasha发布了新的文献求助10
19秒前
20秒前
Brave完成签到,获得积分20
20秒前
21秒前
随性完成签到,获得积分10
22秒前
图图完成签到,获得积分10
22秒前
23秒前
夜雨清痕y发布了新的文献求助10
24秒前
Brave发布了新的文献求助10
28秒前
Davey1220完成签到,获得积分10
32秒前
ningmeng完成签到,获得积分10
34秒前
研友Bn完成签到 ,获得积分10
34秒前
yy完成签到,获得积分10
34秒前
zhaoshasha完成签到,获得积分20
35秒前
41秒前
44秒前
沉默采波完成签到 ,获得积分10
46秒前
czz014发布了新的文献求助10
51秒前
笨笨忘幽发布了新的文献求助10
52秒前
jinghong完成签到 ,获得积分10
53秒前
334niubi666完成签到 ,获得积分10
55秒前
Chandler完成签到,获得积分10
56秒前
科研通AI2S应助WYN采纳,获得10
57秒前
zhoahai完成签到 ,获得积分10
58秒前
畅快芝麻完成签到,获得积分10
59秒前
keep完成签到,获得积分10
1分钟前
遇见飞儿完成签到,获得积分10
1分钟前
立军发布了新的文献求助10
1分钟前
azhou176完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780920
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10227030
捐赠科研通 3041612
什么是DOI,文献DOI怎么找? 1669520
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734