Conductive and capacitive network for enriching the exoelectrogens and enhancing the extracellular electron transfer in microbial fuel cells

微生物燃料电池 电容感应 电子转移 细胞外 导电体 纳米技术 燃料电池 材料科学 化学 化学工程 光电子学 工程类 电极 电气工程 光化学 复合材料 生物化学 物理化学 阳极
作者
Xusen Cheng,Yunfeng Qiu,Yanxia Wang,Yuanlin Wang,Jinteng Qi,Zhuangzhuang Ma,Tiedong Sun,Shaoqin Liu
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
标识
DOI:10.1016/j.jcis.2024.03.063
摘要

Although lots of nanomaterials modified anodes have been reported to improve the bacterial attachment and extracellular electron transfer (EET) in microbial fuel cells (MFCs), the lack of a three dimensional (3D) conductive and capacitive network severely limited MFCs performance. In this work, 3D conductive networks derived from mucor mycelia were grown on carbon cloth (CC), and capacitive FeMn phosphides/oxides were further anchored on these 3D networks by electrochemical deposition (denoted as FeMn/CMM@CC) to simultaneously address the above challenges. As a result, the multivalent metal active sites were evenly distributed on 3D conductive network, which favored the enrichment of exoelectrogens, mass transport and EET. Consequently, the as-prepared FeMn/CMM@CC anode displayed accumulated charge of 131.4C/m2, higher than bare CC. Meanwhile, FeMn/CMM@CC anode substantially promoted flavin excretion and the amounts of nano conduits. The abundance of Geobacter was 63 % on bare CC, and greatly increased to 83 % on FeMn/CMM@CC. MFCs equipped by FeMn/CMM@CC anode presented the power density of 3.06 W/m2 and coulombic efficiency (29.9 %), evidently higher than bare CC (1.29 W/m2, 7.3 %), and the daily chemical oxygen demand (COD) removal amount also increased to 92.6 mg/L/d. This work developed a facile method to optimize the abiotic-biotic interface by introducing 3D conductive and capacitive network, which was proved to be a promising strategy to modify macro-porous electrodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助军军问问张采纳,获得10
刚刚
大黄完成签到 ,获得积分10
2秒前
抓到你啦完成签到,获得积分10
4秒前
4秒前
viogriffin完成签到,获得积分10
5秒前
Davidfly20完成签到,获得积分10
6秒前
xs完成签到,获得积分10
7秒前
不眠的人完成签到,获得积分10
7秒前
我是老大应助Star1983采纳,获得10
7秒前
8秒前
天子笑完成签到,获得积分10
8秒前
hehehaha完成签到,获得积分10
9秒前
oldyang发布了新的文献求助10
11秒前
李小宇完成签到,获得积分10
11秒前
小王完成签到 ,获得积分10
12秒前
皓轩完成签到 ,获得积分10
13秒前
烟花应助chencai采纳,获得10
13秒前
陈荣完成签到 ,获得积分10
14秒前
神勇水杯完成签到,获得积分10
14秒前
springkaka完成签到,获得积分10
17秒前
17秒前
秋雪瑶应助Oak采纳,获得10
17秒前
LiangYongrui完成签到,获得积分10
18秒前
Bryan应助科研通管家采纳,获得10
18秒前
jjyy应助科研通管家采纳,获得10
18秒前
Bryan应助科研通管家采纳,获得10
18秒前
Bryan应助科研通管家采纳,获得10
18秒前
大个应助科研通管家采纳,获得10
18秒前
75986686完成签到,获得积分10
19秒前
19秒前
西音发布了新的文献求助10
20秒前
研友_GZ3zRn完成签到 ,获得积分0
20秒前
顺利白桃完成签到,获得积分0
21秒前
月不笑发布了新的文献求助10
22秒前
格瑞格完成签到,获得积分10
22秒前
zygclwl发布了新的文献求助10
23秒前
海棠微雨完成签到,获得积分10
24秒前
25秒前
27秒前
Ava应助今夜无人入眠采纳,获得10
27秒前
高分求助中
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
The three stars each: the Astrolabes and related texts 500
Revolutions 400
Diffusion in Solids: Key Topics in Materials Science and Engineering 400
Phase Diagrams: Key Topics in Materials Science and Engineering 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2451538
求助须知:如何正确求助?哪些是违规求助? 2124557
关于积分的说明 5406182
捐赠科研通 1853334
什么是DOI,文献DOI怎么找? 921734
版权声明 562273
科研通“疑难数据库(出版商)”最低求助积分说明 493051