人工智能
计算机科学
支持向量机
模式识别(心理学)
特征提取
分类器(UML)
分类
分割
残差神经网络
集成学习
上下文图像分类
残余物
核(代数)
机器学习
深度学习
图像(数学)
数学
组合数学
算法
作者
A. Arulmurugan,R. Kaviarasan,Parimala Garnepudi,M. Kanchana,D. Kothandaraman,C.H. Sandeep
摘要
This research focuses on scene segmentation in remotely sensed images within the field of Remote Sensing Image Scene Understanding (RSISU). Leveraging recent advancements in Deep Learning (DL), particularly Residual Neural Networks (RESNET-50 and RESNET-101), and the research proposes a methodology involving feature fusing, extraction, and classification for categorizing remote sensing images. The approach employs a dataset from the University of California Irvine (UCI) comprising twenty-one groups of pictures. The images undergo pre-processing, feature extraction using the mentioned DL frameworks, and subsequent categorization through an ensemble classification structure combining Kernel Extreme Learning Machine (KELM) and Support Vector Machine (SVM). The paper concludes with optimal results achieved through performance and comparison analyses.
科研通智能强力驱动
Strongly Powered by AbleSci AI