Application of an Artificial Neural Network for Efficient Computation of Chemical Activities within an EAF Process Model

人工神经网络 过程(计算) 计算 计算机科学 人工智能 算法 程序设计语言
作者
Alexander Reinicke,Til-Niklas Engbrecht,Lilly Schüttensack,Thomas Echterhof
出处
期刊:Metals [MDPI AG]
卷期号:14 (6): 736-736 被引量:4
标识
DOI:10.3390/met14060736
摘要

The electric arc furnace (EAF) is considered the second most important process for the production of crude steel and is usually used for the melting of scrap. With the current emphasis on defossilization, its share in global steelmaking is likely to further increase. Due to the large production quantities, minor improvements to the EAF process can still accumulate into a significant reduction in overall energy and resource consumption. A major aspect in the efficient operation of the EAF is achieving beneficial slag properties, as the slag influences the composition of the steel and can reduce energy losses as well as the maintenance cost. In order to investigate the EAF operation, a dynamic process model is applied. Within the model, the chemical reactions of the metal–slag system are calculated based on the activities of the involved species. In this regard, multiple models for the calculation of the chemical activities have been implemented. However, depending on the chosen model, the computation of the slag activities can be computationally demanding. For this reason, the application of a neural network for the calculation of the chemical activities within the slag is investigated. The performance of the neural network is then compared to the results of the previously applied models by using the commercial software FactSage as a reference. The validation shows that the surrogate model achieves great accuracy while keeping the computation demand low.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
固态发布了新的文献求助10
刚刚
刚刚
feiyuzhang发布了新的文献求助10
刚刚
刚刚
1秒前
天天快乐应助曹梓轩采纳,获得10
1秒前
YT发布了新的文献求助10
1秒前
小方发布了新的文献求助10
2秒前
2秒前
星辰大海应助xlarge2采纳,获得10
2秒前
hahage发布了新的文献求助30
3秒前
量子星尘发布了新的文献求助10
3秒前
科研通AI6.1应助白鸽鸽采纳,获得10
3秒前
JJ完成签到,获得积分10
3秒前
3秒前
4秒前
123完成签到,获得积分10
4秒前
mypang发布了新的文献求助10
5秒前
聪明帅哥发布了新的文献求助10
5秒前
Jun发布了新的文献求助10
5秒前
wq完成签到,获得积分10
6秒前
被迫躺平的卷王完成签到,获得积分10
6秒前
7秒前
球球发布了新的文献求助10
8秒前
8秒前
小小娜发布了新的文献求助10
8秒前
科研通AI6.1应助liu采纳,获得10
8秒前
bu拿下PHD绝不回头完成签到,获得积分10
9秒前
duoduo7完成签到,获得积分20
9秒前
wanci应助小算子采纳,获得10
9秒前
qingjian应助半城烟火采纳,获得50
9秒前
司空乞发布了新的文献求助10
9秒前
smottom应助火星上莛采纳,获得10
10秒前
马亚飞发布了新的文献求助10
10秒前
Angel应助真实的青旋采纳,获得10
11秒前
11秒前
11秒前
hi完成签到,获得积分10
12秒前
sxh完成签到,获得积分10
12秒前
阡陌发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759795
求助须知:如何正确求助?哪些是违规求助? 5522143
关于积分的说明 15395458
捐赠科研通 4896764
什么是DOI,文献DOI怎么找? 2633888
邀请新用户注册赠送积分活动 1581947
关于科研通互助平台的介绍 1537419