Deep generative models generate mRNA sequences with enhanced translation capacity and stability

翻译(生物学) 生成语法 理论(学习稳定性) 生成模型 信使核糖核酸 人工智能 计算机科学 生物 机器学习 遗传学 基因
作者
He Zhang,Hailong Liu,Yushan Xu,Yiming Liu,Jia Wang,Yan Qin,Haiyan Wang,Lili Ma,Zhiyuan Xun,Timothy K. Lu,Jicong Cao
标识
DOI:10.1101/2024.06.20.599727
摘要

Despite the tremendous success of messenger RNA (mRNA) COVID-19 vaccines, the extension of this modality to a broader spectrum of diseases necessitates substantial enhancements, particularly in the design of mRNAs with elevated expression levels and extended durability. Here we present GEMORNA, a deep generative model designed to generate novel mRNA coding sequences (CDSs) and untranslated regions (UTRs) with superior translation capacity, comparable to the sophisticated task of language translation and free-form poetry composition with accurate grammar and semantics. Our AI model was trained on an extensive collection of RNA sequences from diverse families, further enhanced with labeled data to refine its performance. Remarkably, we demonstrate that our AI-generated mRNAs exhibited 8.2-fold and 15.9-fold increases in firefly luciferase expression compared to benchmark mRNAs in two different cell types. Additionally, Our AI- designed COVID-19 mRNA vaccine elicited a 4-fold increase in anti-COVID antibody titer in mice relative to BNT162b2. Furthermore, GEMORNA’s versatility extends to circular mRNA design, which we facilitated a 27-fold increase in human erythropoietin protein expression in vivo than a systematically optimized benchmark sequence. We also created circular mRNAs with substantial improvements in expression levels, durability and anti-tumor cell cytotoxicity in mRNA-transduced CAR-T cells compared with an experimentally validated benchmark. In summary, GEMORNA generates novel mRNA sequences with significant performance improvements and has the potential to enable a wide range of therapeutic and vaccine applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
猫的淡淡发布了新的文献求助10
1秒前
拼搏的飞莲完成签到 ,获得积分10
1秒前
Alan发布了新的文献求助10
1秒前
wsll发布了新的文献求助10
2秒前
疯狂的雨南应助25采纳,获得10
2秒前
风清扬发布了新的文献求助10
2秒前
cc完成签到,获得积分20
2秒前
2秒前
默11发布了新的文献求助10
3秒前
丹曦完成签到,获得积分10
3秒前
3秒前
不过尔尔发布了新的文献求助10
3秒前
Cactus发布了新的文献求助10
4秒前
4秒前
修狗狗完成签到,获得积分10
4秒前
舟行碧波上完成签到,获得积分10
4秒前
5秒前
合欢发布了新的文献求助10
5秒前
6秒前
6秒前
emilia发布了新的文献求助10
7秒前
搜集达人应助一口采纳,获得10
7秒前
魔道祖师完成签到,获得积分20
7秒前
Joe发布了新的文献求助10
8秒前
烟花应助第七个星球采纳,获得10
8秒前
8秒前
SciGPT应助corn采纳,获得10
8秒前
8秒前
桐桐应助灵巧书本采纳,获得10
9秒前
9秒前
9秒前
9秒前
吴彦祖发布了新的文献求助10
10秒前
赘婿应助coconut采纳,获得30
10秒前
罗健完成签到 ,获得积分10
10秒前
成就白秋发布了新的文献求助10
10秒前
真实的依波完成签到,获得积分10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
复杂系统建模与弹性模型研究 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5484871
求助须知:如何正确求助?哪些是违规求助? 4585028
关于积分的说明 14401930
捐赠科研通 4515371
什么是DOI,文献DOI怎么找? 2474235
邀请新用户注册赠送积分活动 1460087
关于科研通互助平台的介绍 1433550