Training of Physical Neural Networks

反向传播 杠杆(统计) 人工神经网络 计算机科学 人工智能 比例(比率) 推论 机器学习 数据科学 物理 量子力学
作者
Ali Momeni,Babak Rahmani,Benjamin Scellier,Logan G. Wright,Peter L. McMahon,Clara C. Wanjura,Yuhang Li,Anas Skalli,Natalia G. Berloff,Tatsuhiro Onodera,İlker Oğuz,Francesco Morichetti,Philipp del Hougne,Manuel Le Gallo,Abu Sebastian,Azalia Mirhoseini,Cheng Zhang,Danijela Marković,Daniel Brunner,Christophe Moser
标识
DOI:10.48550/arxiv.2406.03372
摘要

Physical neural networks (PNNs) are a class of neural-like networks that leverage the properties of physical systems to perform computation. While PNNs are so far a niche research area with small-scale laboratory demonstrations, they are arguably one of the most underappreciated important opportunities in modern AI. Could we train AI models 1000x larger than current ones? Could we do this and also have them perform inference locally and privately on edge devices, such as smartphones or sensors? Research over the past few years has shown that the answer to all these questions is likely "yes, with enough research": PNNs could one day radically change what is possible and practical for AI systems. To do this will however require rethinking both how AI models work, and how they are trained - primarily by considering the problems through the constraints of the underlying hardware physics. To train PNNs at large scale, many methods including backpropagation-based and backpropagation-free approaches are now being explored. These methods have various trade-offs, and so far no method has been shown to scale to the same scale and performance as the backpropagation algorithm widely used in deep learning today. However, this is rapidly changing, and a diverse ecosystem of training techniques provides clues for how PNNs may one day be utilized to create both more efficient realizations of current-scale AI models, and to enable unprecedented-scale models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuan完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
2秒前
liliyi完成签到 ,获得积分10
2秒前
蒙蒙完成签到,获得积分10
2秒前
3秒前
梅花易数完成签到,获得积分10
3秒前
5秒前
寒冷丹雪完成签到,获得积分10
7秒前
所所应助中杯西瓜冰采纳,获得10
7秒前
石濑汤汤发布了新的文献求助10
7秒前
9秒前
英俊的铭应助拉长的晓蕾采纳,获得10
9秒前
研友-wbg-LjbQIL完成签到 ,获得积分10
10秒前
风中元瑶完成签到 ,获得积分10
10秒前
d_fishier完成签到 ,获得积分10
10秒前
爱笑愚志完成签到 ,获得积分10
12秒前
丹青完成签到,获得积分10
13秒前
英俊的铭应助学术小子采纳,获得10
13秒前
13秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
小杭76应助科研通管家采纳,获得10
14秒前
殷勤的紫槐应助科研通管家采纳,获得200
14秒前
天天快乐应助科研通管家采纳,获得10
14秒前
大个应助科研通管家采纳,获得10
14秒前
14秒前
唯我文乃完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
16秒前
苹果大侠完成签到 ,获得积分10
16秒前
任性雪糕完成签到 ,获得积分10
16秒前
wen完成签到 ,获得积分10
17秒前
化学兔八哥完成签到,获得积分10
18秒前
立na发布了新的文献求助10
18秒前
史迪仔完成签到,获得积分10
18秒前
透明的世界完成签到,获得积分10
18秒前
爱美丽完成签到,获得积分10
20秒前
小刚完成签到,获得积分0
20秒前
applebeer完成签到,获得积分10
20秒前
豪豪完成签到,获得积分10
23秒前
关美人儿完成签到,获得积分10
23秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450513
求助须知:如何正确求助?哪些是违规求助? 4558271
关于积分的说明 14265898
捐赠科研通 4481797
什么是DOI,文献DOI怎么找? 2454981
邀请新用户注册赠送积分活动 1445752
关于科研通互助平台的介绍 1421891