Supervise-Assisted Self-Supervised Deep-Learning Method for Hyperspectral Image Restoration

高光谱成像 人工智能 计算机科学 深度学习 图像(数学) 模式识别(心理学) 计算机视觉
作者
Miaoyu Li,Ying Fu,Tao Zhang,Guanghui Wen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:5
标识
DOI:10.1109/tnnls.2024.3386809
摘要

Hyperspectral image (HSI) restoration is a challenging research area, covering a variety of inverse problems. Previous works have shown the great success of deep learning in HSI restoration. However, facing the problem of distribution gaps between training HSIs and target HSI, those data-driven methods falter in delivering satisfactory outcomes for the target HSIs. In addition, the degradation process of HSIs is usually disturbed by noise, which is not well taken into account in existing restoration methods. The existence of noise further exacerbates the dissimilarities within the data, rendering it challenging to attain desirable results without an appropriate learning approach. To track these issues, in this article, we propose a supervise-assisted self-supervised deep-learning method to restore noisy degraded HSIs. Initially, we facilitate the restoration network to acquire a generalized prior through supervised learning from extensive training datasets. Then, the self-supervised learning stage is employed and utilizes the specific prior of the target HSI. Particularly, to restore clean HSIs during the self-supervised learning stage from noisy degraded HSIs, we introduce a noise-adaptive loss function that leverages inner statistics of noisy degraded HSIs for restoration. The proposed noise-adaptive loss consists of Stein's unbiased risk estimator (SURE) and total variation (TV) regularizer and fine-tunes the network with the presence of noise. We demonstrate through experiments on different HSI tasks, including denoising, compressive sensing, super-resolution, and inpainting, that our method outperforms state-of-the-art methods on benchmarks under quantitative metrics and visual quality. The code is available at https://github.com/ying-fu/SSDL-HSI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
米飞跃发布了新的文献求助10
1秒前
2秒前
JamesPei应助勤劳的筝采纳,获得10
2秒前
3秒前
HHH发布了新的文献求助10
6秒前
7秒前
bkagyin应助不知道叫啥采纳,获得10
7秒前
9秒前
新酱完成签到,获得积分10
9秒前
A1len发布了新的文献求助10
9秒前
奋斗的暖阳完成签到,获得积分10
11秒前
sunrise发布了新的文献求助10
12秒前
13秒前
SherWei完成签到,获得积分10
13秒前
研友_VZG7GZ应助彩虹毛毛虫采纳,获得10
13秒前
Jasper应助狗猪仔采纳,获得10
15秒前
等待的问夏完成签到 ,获得积分10
16秒前
987654发布了新的文献求助10
18秒前
18秒前
22秒前
Akim应助Hui_2023采纳,获得10
22秒前
寒冷寻桃完成签到 ,获得积分10
22秒前
科研通AI5应助apple采纳,获得10
23秒前
小二郎应助薛强采纳,获得10
24秒前
云草完成签到,获得积分10
25秒前
26秒前
987654完成签到,获得积分10
26秒前
27秒前
俭朴山灵发布了新的文献求助10
28秒前
重要纸飞机完成签到,获得积分10
28秒前
一直很安静完成签到,获得积分10
29秒前
30秒前
30秒前
小熊熊完成签到,获得积分10
31秒前
云草发布了新的文献求助10
32秒前
rr完成签到,获得积分10
33秒前
乔心发布了新的文献求助10
33秒前
英俊延恶发布了新的文献求助30
35秒前
35秒前
小纯牛奶完成签到,获得积分10
36秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810555
求助须知:如何正确求助?哪些是违规求助? 3355069
关于积分的说明 10373953
捐赠科研通 3071569
什么是DOI,文献DOI怎么找? 1687034
邀请新用户注册赠送积分活动 811374
科研通“疑难数据库(出版商)”最低求助积分说明 766626