Which images to label for few-shot medical image analysis?

计算机科学 人工智能 排名(信息检索) 注释 背景(考古学) 分割 鉴定(生物学) 机器学习 突出 过程(计算) 深度学习 模式识别(心理学) 植物 生物 操作系统 古生物学
作者
Quan Quan,Qingsong Yao,Heqin Zhu,Qiyuan Wang,S. Kevin Zhou
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:96: 103200-103200
标识
DOI:10.1016/j.media.2024.103200
摘要

The success of deep learning methodologies hinges upon the availability of meticulously labeled extensive datasets. However, when dealing with medical images, the annotation process for such abundant training data often necessitates the involvement of experienced radiologists, thereby consuming their limited time resources. In order to alleviate this burden, few-shot learning approaches have been developed, which manage to achieve competitive performance levels with only several labeled images. Nevertheless, a crucial yet previously overlooked problem in few-shot learning is about the selection of template images for annotation before learning, which affects the final performance. In this study, we propose a novel TEmplate Choosing Policy (TECP) that aims to identify and select "the most worthy" images for annotation, particularly within the context of multiple few-shot medical tasks, including landmark detection, anatomy detection, and anatomy segmentation. TECP is composed of four integral components: (1) Self-supervised training, which entails training a pre-existing deep model to extract salient features from radiological images; (2) Alternative proposals for localizing informative regions within the images; and (3) Representative Score Estimation, which involves the evaluation and identification of the most representative samples or templates. (4) Ranking, which rank all candidates and select one with highest representative score. The efficacy of the TECP approach is demonstrated through a series of comprehensive experiments conducted on multiple public datasets. Across all three medical tasks, the utilization of TECP yields noticeable improvements in model performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xzy998发布了新的文献求助10
4秒前
4秒前
八九完成签到 ,获得积分10
6秒前
牛马完成签到,获得积分10
8秒前
Lee发布了新的文献求助10
8秒前
领导范儿应助虚拟的芾采纳,获得10
8秒前
Bingbingbing完成签到,获得积分10
10秒前
15秒前
舒心白山完成签到 ,获得积分10
17秒前
善学以致用应助Andorchid采纳,获得10
17秒前
17秒前
哎噗发布了新的文献求助30
20秒前
与月同行完成签到,获得积分10
20秒前
小满完成签到,获得积分10
21秒前
安安发布了新的文献求助10
23秒前
25秒前
李y梅子发布了新的文献求助10
28秒前
28秒前
不一样的烟火完成签到,获得积分10
29秒前
32秒前
BOBPRO发布了新的文献求助10
33秒前
风雪丽人完成签到,获得积分10
34秒前
李健应助林二车娜姆采纳,获得30
35秒前
干净思远完成签到,获得积分10
35秒前
36秒前
安安完成签到,获得积分10
39秒前
42秒前
whykm91完成签到 ,获得积分10
42秒前
Afliea发布了新的文献求助10
42秒前
李y梅子完成签到,获得积分10
43秒前
44秒前
44秒前
BOBPRO完成签到,获得积分10
45秒前
Xiaoxiao应助麻了采纳,获得10
47秒前
今后应助油个大饼呜呜呜采纳,获得10
47秒前
50秒前
HarryQ完成签到,获得积分10
53秒前
爆米花应助BOBPRO采纳,获得10
53秒前
威武的雨筠完成签到 ,获得积分10
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781094
求助须知:如何正确求助?哪些是违规求助? 3326508
关于积分的说明 10227563
捐赠科研通 3041675
什么是DOI,文献DOI怎么找? 1669546
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758734