Scalable Precise Nanofilm Coating and Gradient Al Doping Enable Stable Battery Cycling of LiCoO2 at 4.7 V

兴奋剂 自行车 涂层 可扩展性 材料科学 电池(电) 纳米技术 化学工程 光电子学 计算机科学 工程类 物理 热力学 功率(物理) 考古 数据库 历史
作者
Jia Yao,Yuyu Li,Tiantian Xiong,Yameng Fan,Lingfei Zhao,Xiangxin Cheng,Yunan Tian,Lele Li,Yan Li,Wen Zhang,Peng Yu,Pingmei Guo,Zehui Yang,Jian Peng,Lixing Xue,Jiazhao Wang,Zhaohuai Li,Ming Xie,Huan Liu,Shi Xue Dou
出处
期刊:Angewandte Chemie [Wiley]
卷期号:63 (32) 被引量:12
标识
DOI:10.1002/anie.202407898
摘要

Abstract The quest for smart electronics with higher energy densities has intensified the development of high‐voltage LiCoO 2 (LCO). Despite their potential, LCO materials operating at 4.7 V faces critical challenges, including interface degradation and structural collapse. Herein, we propose a collective surface architecture through precise nanofilm coating and doping that combines an ultra‐thin LiAlO 2 coating layer and gradient doping of Al. This architecture not only mitigates side reactions, but also improves the Li + migration kinetics on the LCO surface. Meanwhile, gradient doping of Al inhibited the severe lattice distortion caused by the irreversible phase transition of O3−H1−3−O1, thereby enhanced the electrochemical stability of LCO during 4.7 V cycling. DFT calculations further revealed that our approach significantly boosts the electronic conductivity. As a result, the modified LCO exhibited an outstanding reversible capacity of 230 mAh g −1 at 4.7 V, which is approximately 28 % higher than the conventional capacity at 4.5 V. To demonstrate their practical application, our cathode structure shows improved stability in full pouch cell configuration under high operating voltage. LCO exhibited an excellent cycling stability, retaining 82.33 % after 1000 cycles at 4.5 V. This multifunctional surface modification strategy offers a viable pathway for the practical application of LCO materials, setting a new standard for the development of high‐energy‐density and long‐lasting electrode materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiao123789发布了新的文献求助10
4秒前
4秒前
完美的友蕊应助甲乙丙丁采纳,获得10
5秒前
5秒前
称心乐枫完成签到,获得积分10
7秒前
完美的友蕊应助甲乙丙丁采纳,获得10
8秒前
kumo完成签到 ,获得积分10
10秒前
10秒前
桐桐应助科研通管家采纳,获得10
11秒前
风清扬应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
李巧儿发布了新的文献求助10
11秒前
所所应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
12秒前
李爱国应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
思源应助科研通管家采纳,获得10
12秒前
12秒前
orixero应助科研通管家采纳,获得10
12秒前
12秒前
ED应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
hoijuon应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
ED应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
竹筏过海应助科研通管家采纳,获得30
13秒前
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
13秒前
真实的一鸣完成签到,获得积分10
13秒前
友好灵松完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966069
求助须知:如何正确求助?哪些是违规求助? 3511435
关于积分的说明 11158171
捐赠科研通 3246056
什么是DOI,文献DOI怎么找? 1793288
邀请新用户注册赠送积分活动 874284
科研通“疑难数据库(出版商)”最低求助积分说明 804311