Scalable Precise Nanofilm Coating and Gradient Al Doping Enable Stable Battery Cycling of LiCoO2 at 4.7 V

兴奋剂 自行车 涂层 可扩展性 材料科学 电池(电) 纳米技术 化学工程 光电子学 计算机科学 工程类 物理 热力学 功率(物理) 考古 数据库 历史
作者
Jia Yao,Yuyu Li,Tiantian Xiong,Yameng Fan,Lingfei Zhao,Xiangxin Cheng,Yunan Tian,Lele Li,Yan Li,Wen Zhang,Peng Yu,Pingmei Guo,Zehui Yang,Jian Peng,Lixing Xue,Jiazhao Wang,Zhaohuai Li,Ming Xie,Huan Liu,Shi Xue Dou
出处
期刊:Angewandte Chemie [Wiley]
卷期号:63 (32) 被引量:9
标识
DOI:10.1002/anie.202407898
摘要

Abstract The quest for smart electronics with higher energy densities has intensified the development of high‐voltage LiCoO 2 (LCO). Despite their potential, LCO materials operating at 4.7 V faces critical challenges, including interface degradation and structural collapse. Herein, we propose a collective surface architecture through precise nanofilm coating and doping that combines an ultra‐thin LiAlO 2 coating layer and gradient doping of Al. This architecture not only mitigates side reactions, but also improves the Li + migration kinetics on the LCO surface. Meanwhile, gradient doping of Al inhibited the severe lattice distortion caused by the irreversible phase transition of O3−H1−3−O1, thereby enhanced the electrochemical stability of LCO during 4.7 V cycling. DFT calculations further revealed that our approach significantly boosts the electronic conductivity. As a result, the modified LCO exhibited an outstanding reversible capacity of 230 mAh g −1 at 4.7 V, which is approximately 28 % higher than the conventional capacity at 4.5 V. To demonstrate their practical application, our cathode structure shows improved stability in full pouch cell configuration under high operating voltage. LCO exhibited an excellent cycling stability, retaining 82.33 % after 1000 cycles at 4.5 V. This multifunctional surface modification strategy offers a viable pathway for the practical application of LCO materials, setting a new standard for the development of high‐energy‐density and long‐lasting electrode materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蘑菇发布了新的文献求助10
1秒前
上官若男应助dudu采纳,获得10
1秒前
疯狂的888发布了新的文献求助10
1秒前
ZZDXXX完成签到,获得积分10
1秒前
虾虾完成签到 ,获得积分10
2秒前
爱科研的睿崽完成签到,获得积分10
2秒前
2秒前
木糖醇完成签到,获得积分10
3秒前
oMayii完成签到 ,获得积分10
3秒前
科研通AI5应助111采纳,获得10
4秒前
shen完成签到,获得积分10
4秒前
4秒前
喜悦安寒完成签到,获得积分10
4秒前
初见完成签到,获得积分10
5秒前
科研人完成签到,获得积分10
5秒前
而发的完成签到,获得积分20
6秒前
6秒前
Accept_zy应助王晓蕾采纳,获得10
6秒前
Tao发布了新的文献求助10
7秒前
羊羊发布了新的文献求助10
7秒前
科研通AI5应助木糖醇采纳,获得10
7秒前
7秒前
Star101HP发布了新的文献求助50
8秒前
zeroayanami0完成签到,获得积分10
8秒前
qiao发布了新的文献求助10
9秒前
姜至完成签到,获得积分10
9秒前
whiter完成签到,获得积分10
9秒前
10秒前
10秒前
Akim应助香山叶正红采纳,获得10
11秒前
222222发布了新的文献求助10
11秒前
11秒前
12秒前
Hina完成签到,获得积分10
12秒前
dudu发布了新的文献求助10
14秒前
半夏发布了新的文献求助10
14秒前
15秒前
悠然发布了新的文献求助10
16秒前
顾己发布了新的文献求助10
16秒前
17秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Topophrenia: Place, Narrative, and the Spatial Imagination 200
Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions (3rd Edition) 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834587
求助须知:如何正确求助?哪些是违规求助? 3377081
关于积分的说明 10496404
捐赠科研通 3096557
什么是DOI,文献DOI怎么找? 1705041
邀请新用户注册赠送积分活动 820414
科研通“疑难数据库(出版商)”最低求助积分说明 772031