EarthGPT: A Universal Multi-modal Large Language Model for Multi-sensor Image Comprehension in Remote Sensing Domain

计算机科学 情态动词 遥感 图像传感器 领域(数学分析) 图像(数学) 理解力 人工智能 计算机视觉 地质学 数学 数学分析 化学 高分子化学 程序设计语言
作者
Wei Zhang,Miaoxin Cai,Tong Zhang,Yin Zhuang,Xuerui Mao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-20 被引量:20
标识
DOI:10.1109/tgrs.2024.3409624
摘要

Multi-modal large language models (MLLMs) have demonstrated remarkable success in vision and visual-language tasks within the natural image domain. Owing to the significant domain gap between natural and remote sensing (RS) images, the development of MLLMs in the RS domain is still in the infant stage. To fill the gap, a pioneer MLLM named EarthGPT integrating various multi-sensor RS interpretation tasks uniformly is proposed in this paper for universal RS image comprehension. Firstly, a visual-enhanced perception mechanism is constructed to refine and incorporate coarse-scale semantic perception information and fine-scale detailed perception information. Secondly, a cross-modal mutual comprehension approach is proposed, aiming at enhancing the interplay between visual perception and language comprehension and deepening the comprehension of both visual and language content. Finally, a unified instruction tuning method for multi-sensor multi-task in the RS domain is proposed to unify a wide range of tasks including scene classification, image captioning, region-level captioning, visual question answering (VQA), visual grounding, object detection, etc. More importantly, a dataset named MMRS-1M featuring large-scale multi-sensor multi-modal RS instruction-following is constructed, comprising over 1M image-text pairs based on 34 existing diverse RS datasets and including multi-sensor images such as optical, synthetic aperture radar (SAR), and infrared. The MMRS-1M dataset addresses the drawback of MLLMs on RS expert knowledge and stimulates the development of MLLMs in the RS domain. Extensive experiments are conducted, demonstrating the EarthGPT's superior performance in various RS visual interpretation tasks compared with the other specialist models and MLLMs, proving the effectiveness of the proposed EarthGPT and offering a versatile paradigm for open-set reasoning tasks. Our code and dataset are available at https://github.com/wivizhang/EarthGPT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ymx1229完成签到,获得积分10
1秒前
bc发布了新的文献求助300
3秒前
4秒前
ymx1229发布了新的文献求助10
5秒前
专注的老太完成签到,获得积分20
6秒前
研友_LXjjOZ发布了新的文献求助10
6秒前
黄金矿工发布了新的文献求助10
6秒前
7秒前
杰尼龟完成签到,获得积分10
10秒前
陈陈发布了新的文献求助10
10秒前
10秒前
11秒前
鱼哲哲完成签到,获得积分10
11秒前
redamancy发布了新的文献求助10
11秒前
12秒前
莫休完成签到 ,获得积分10
13秒前
听话的靖柏完成签到 ,获得积分10
14秒前
14秒前
非常OK完成签到 ,获得积分10
15秒前
16秒前
123发布了新的文献求助10
17秒前
18秒前
18秒前
18秒前
雨碎寒江完成签到,获得积分0
21秒前
科研通AI5应助莫休采纳,获得10
21秒前
豆浆烩面发布了新的文献求助10
21秒前
21秒前
22秒前
阔达往事发布了新的文献求助10
22秒前
两条鱼发布了新的文献求助10
23秒前
qwp应助可可杨采纳,获得10
23秒前
陈陈完成签到,获得积分10
24秒前
25秒前
25秒前
25秒前
26秒前
星辰大海应助研友_LXjjOZ采纳,获得10
26秒前
脑洞疼应助笛恰儿采纳,获得10
27秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814553
求助须知:如何正确求助?哪些是违规求助? 3358709
关于积分的说明 10397030
捐赠科研通 3076053
什么是DOI,文献DOI怎么找? 1689681
邀请新用户注册赠送积分活动 813195
科研通“疑难数据库(出版商)”最低求助积分说明 767514