Biomass-Based, Dual Enzyme-Responsive Nanopesticides: Eco-friendly and Efficient Control of Pine Wood Nematode Disease

松材线虫 侵染 果胶 线虫 生物 毒理 食品科学 园艺 生态学
作者
Yingjian Ma,Meng Yu,Zhe Sun,Shouhe Pan,Yinmin Wang,Fengyu Li,Xinyu Guo,Rui Zhao,Yong Xu,Xuemin Wu
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (21): 13781-13793 被引量:13
标识
DOI:10.1021/acsnano.4c02031
摘要

Pine wood nematode (PWN) disease is a globally devastating forest disease caused by infestation with PWN, Bursaphelenchus xylophilus, which mainly occurs through the vector insect Japanese pine sawyer (JPS), Monochamus alternatus. PWN disease is notoriously difficult to manage effectively and is known as the "cancer of pine trees." In this study, dual enzyme-responsive nanopesticides (AVM@EC@Pectin) were prepared using nanocoating avermectin (AVM) after modification with natural polymers. The proposed treatment can respond to the cell wall-degrading enzymes secreted by PWNs and vector insects during pine tree infestation to intelligently release pesticides to cut off the transmission and infestation pathways and realize the integrated control of PWN disease. The LC50 value of AVM@EC@Pectin was 11.19 mg/L for PWN and 26.31 mg/L for JPS. The insecticidal activity of AVM@EC@Pectin was higher than that of the commercial emulsifiable concentrate (AVM-EC), and the photostability, adhesion, and target penetration were improved. The half-life (t1/2) of AVM@EC@Pectin was 133.7 min, which is approximately twice that of AVM-EC (68.2 min). Sprayed and injected applications showed that nanopesticides had superior bidirectional transportation, with five-times higher AVM contents detected in the roots relative to those of AVM-EC when sprayed at the top. The safety experiment showed that the proposed treatment had lower toxicity and higher safety for nontarget organisms in the application environment and human cells. This study presents a green, safe, and effective strategy for the integrated management of PWN disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
阔达的星月完成签到,获得积分10
3秒前
执着静竹完成签到,获得积分10
4秒前
4秒前
小雨点发布了新的文献求助10
4秒前
七七完成签到 ,获得积分10
5秒前
5秒前
9秒前
小羊发布了新的文献求助10
9秒前
马喽完成签到,获得积分10
9秒前
研友_8KKMP8发布了新的文献求助10
13秒前
无奈犀牛完成签到,获得积分10
13秒前
Lucas应助学术大牛采纳,获得10
16秒前
现实的飞风完成签到,获得积分10
18秒前
19秒前
章鱼小丸子完成签到,获得积分10
20秒前
22秒前
wanci应助云中鸮采纳,获得10
22秒前
少女和猫发布了新的文献求助30
26秒前
小m发布了新的文献求助10
26秒前
南桑发布了新的文献求助10
28秒前
Starry完成签到,获得积分10
28秒前
生动的大地完成签到,获得积分20
30秒前
脑洞疼应助土豆酱采纳,获得10
30秒前
研友_8KKMP8完成签到,获得积分10
30秒前
大模型应助小人物采纳,获得10
34秒前
小蘑菇应助南桑采纳,获得10
34秒前
小胖完成签到,获得积分10
38秒前
852应助99采纳,获得10
40秒前
43秒前
traetrae完成签到,获得积分10
43秒前
充电宝应助爬不起来采纳,获得10
44秒前
Wei完成签到 ,获得积分10
45秒前
可爱的函函应助yihua采纳,获得10
46秒前
Teddyboy完成签到,获得积分10
47秒前
Taemy完成签到,获得积分10
47秒前
可靠的冰烟完成签到,获得积分10
47秒前
学术大牛发布了新的文献求助10
48秒前
科研通AI5应助SHENZH采纳,获得10
48秒前
搜集达人应助后羿采纳,获得10
49秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835031
求助须知:如何正确求助?哪些是违规求助? 3377559
关于积分的说明 10499056
捐赠科研通 3097028
什么是DOI,文献DOI怎么找? 1705435
邀请新用户注册赠送积分活动 820590
科研通“疑难数据库(出版商)”最低求助积分说明 772123