Assessing the potential of ChatGPT-4 to accurately identify drug-drug interactions and provide clinical pharmacotherapy recommendations

医学 药品 养生 药物治疗 药物与药物的相互作用 重症监护医学 临床意义 内科学 药理学
作者
Amoreena Most,Aaron Chase,Andrea Sikora Newsome
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2024.06.29.24309701
摘要

Abstract Background Large language models (LLMs) such as ChatGPT have emerged as promising artificial intelligence tools to support clinical decision making. The ability of ChatGPT to evaluate medication regimens, identify drug-drug interactions (DDIs), and provide clinical recommendations is unknown. The purpose of this study is to examine the performance of GPT-4 to identify clinically relevant DDIs and assess accuracy of recommendations provided. Methods A total of 15 medication regimens were created containing commonly encountered DDIs that were considered either clinically significant or clinically unimportant. Two separate prompts were developed for medication regimen evaluation. The primary outcome was if GPT-4 identified the most relevant DDI within the medication regimen. Secondary outcomes included rating GPT-4’s interaction rationale, clinical relevance ranking, and overall clinical recommendations. Interrater reliability was determined using kappa statistic. Results GPT-4 identified the intended DDI in 90% of medication regimens provided (27/30). GPT-4 categorized 86% as highly clinically relevant compared to 53% being categorized as highly clinically relevant by expert opinion. Inappropriate clinical recommendations potentially causing patient harm were provided in 14% of responses provided by GPT-4 (2/14), and 63% of responses contained accurate information but incomplete recommendations (19/30). Conclusions While GPT-4 demonstrated promise in its ability to identify clinically relevant DDIs, application to clinical cases remains an area of investigation. Findings from this study may assist in future development and refinement of LLMs for drug-drug interaction queries to assist in clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星星完成签到,获得积分10
刚刚
3216完成签到,获得积分10
2秒前
LaiC完成签到,获得积分10
2秒前
aleilei完成签到 ,获得积分10
3秒前
3秒前
刘源发布了新的文献求助10
3秒前
雪球1248发布了新的文献求助10
4秒前
长理物电强完成签到,获得积分10
4秒前
paleo-地质完成签到,获得积分10
4秒前
烂漫的松完成签到,获得积分10
4秒前
爱听歌的复天完成签到,获得积分10
4秒前
Autin完成签到,获得积分0
5秒前
刻苦丝袜完成签到,获得积分10
6秒前
续集J发布了新的文献求助10
6秒前
jake完成签到,获得积分10
6秒前
忧伤的冰薇完成签到 ,获得积分10
6秒前
小石头完成签到,获得积分10
6秒前
brick2024完成签到,获得积分10
6秒前
简简单单完成签到,获得积分10
8秒前
9秒前
坦率书本完成签到,获得积分10
9秒前
过昭关完成签到,获得积分10
9秒前
9秒前
Jasper应助跑江湖的海采纳,获得200
9秒前
casey完成签到,获得积分10
11秒前
bettersy完成签到,获得积分10
11秒前
hyekyo完成签到,获得积分10
12秒前
科研通AI2S应助wodetaiyangLLL采纳,获得10
13秒前
13秒前
XU博士完成签到,获得积分10
13秒前
yoyofun应助BulingQAQ采纳,获得10
13秒前
都是发布了新的文献求助30
14秒前
123455完成签到,获得积分10
14秒前
科研通AI5应助开放的大侠采纳,获得10
15秒前
Robertchen完成签到,获得积分0
15秒前
miumiu发布了新的文献求助10
16秒前
爱X7的嘛喽完成签到,获得积分10
17秒前
迷路世立完成签到,获得积分10
17秒前
眯眯眼的谷冬完成签到 ,获得积分10
17秒前
追梦小帅完成签到,获得积分10
18秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795709
求助须知:如何正确求助?哪些是违规求助? 3340749
关于积分的说明 10301635
捐赠科研通 3057268
什么是DOI,文献DOI怎么找? 1677625
邀请新用户注册赠送积分活动 805503
科研通“疑难数据库(出版商)”最低求助积分说明 762642