A paradigm shift in processing large UAV image datasets for emergency management of natural hazards

工作流程 计算机科学 摄影测量学 大洪水 软件部署 人工智能 实时计算 数据挖掘 数据科学 地理 数据库 软件工程 考古
作者
Marco La Salandra,S. Nicotri,Giacinto Donvito,Alessandro Italiano,Rosa Colacicco,Giorgia Miniello,Isabella Lapietra,Rodolfo Roseto,Pierfrancesco Dellino,Domenico Capolongo
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:132: 103996-103996
标识
DOI:10.1016/j.jag.2024.103996
摘要

Over the past two decades, natural hazards have claimed the lives of tens of thousands of people worldwide, every year. Unmanned Aerial Vehicles (UAVs) are pivotal in natural hazard management, offering rapid deployment, flexibility, and cost-effectiveness. Advances such as Beyond Visual Line Of Sight (BVLOS) missions, swarm surveying, Artificial Intelligence (AI), edge-computing, and Structure from Motion (SfM) photogrammetry enhance their high-resolution spatiotemporal data capabilities, but the need for large datasets poses challenges in terms of storage, computational resources and, especially, processing time. This work introduces an original high-performance UAV photogrammetry workflow through the implementation of an open-source distributed approach using the ReCaS-Bari HPC cluster. Performance tests of the workflow, that includes computing parallelism, GPU usage, and hybrid bundle adjustment, demonstrate a significant reduction in processing time for large UAV image datasets. The workflow outperformed current methods, reducing processing time from 908 down to 104 min for 2,691 images and handling 11,549 images in just 7.8 h (a 70 % improvement over leading commercial software). Comparative analysis with cluster-based state-of-the-art approaches revealed noteworthy reductions, reaching up to 86 % for about 7,000 images. A case study, focusing on the Basento river (Southern Italy) flood event occurred in May 2023, proved the workflow practical implications in emergency management. A change detection assessment facilitated the identification and quantification of flood-induced morphological alterations along a 3 km of river reach length within about 3 h. The results highlight the workflow utility in providing accurate and near real-time information for emergency management, enhancing situational awareness and facilitating informed decision-making during disastrous events.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiuyang发布了新的文献求助10
刚刚
Mercury完成签到 ,获得积分10
刚刚
无花果应助liguanyu1078采纳,获得10
刚刚
淡然寒蕾完成签到,获得积分10
刚刚
一一应助魔幻若血采纳,获得10
刚刚
努力的小南瓜头完成签到,获得积分10
1秒前
我住隔壁我姓王完成签到,获得积分10
1秒前
guilin发布了新的文献求助10
1秒前
小二郎应助三山五岳采纳,获得10
1秒前
房LY完成签到,获得积分10
2秒前
高贵的斑马完成签到,获得积分20
2秒前
思源应助puzhongjiMiQ采纳,获得10
2秒前
2秒前
空白完成签到,获得积分10
2秒前
3秒前
完美世界应助禾沐采纳,获得10
3秒前
3秒前
孝顺的猕猴桃完成签到,获得积分10
3秒前
4秒前
阳光不二完成签到,获得积分10
4秒前
Erling完成签到,获得积分10
4秒前
5秒前
5秒前
无所谓完成签到,获得积分10
5秒前
共享精神应助Tong采纳,获得10
5秒前
俏皮的采波完成签到,获得积分10
5秒前
6秒前
natuki完成签到,获得积分10
6秒前
HMZ完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
xixi发布了新的文献求助10
8秒前
安玖完成签到,获得积分10
8秒前
Liangyong_Fu完成签到 ,获得积分10
8秒前
9秒前
haoooooooooooooo完成签到,获得积分10
9秒前
yulian完成签到,获得积分10
9秒前
幼萱完成签到,获得积分10
9秒前
Liar应助YH采纳,获得10
10秒前
高分求助中
ISCN 2024 - An International System for Human Cytogenomic Nomenclature (2024) 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788571
求助须知:如何正确求助?哪些是违规求助? 3333821
关于积分的说明 10264942
捐赠科研通 3049958
什么是DOI,文献DOI怎么找? 1673735
邀请新用户注册赠送积分活动 802206
科研通“疑难数据库(出版商)”最低求助积分说明 760549