Associating Knee Osteoarthritis Progression with Temporal‐Regional Graph Convolutional Network Analysis on MR Images

可解释性 骨关节炎 医学 人口 卷积神经网络 队列 矢状面 人工智能 模式识别(心理学) 核医学 计算机科学 放射科 内科学 病理 环境卫生 替代医学
作者
Jiaping Hu,Junyi Peng,Zidong Zhou,Tianyun Zhao,Lijie Zhong,Keyan Yu,Kexin Jiang,Tzak S. Lau,Chuan Huang,Lijun Lu,Xiaodong Zhang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
被引量:3
标识
DOI:10.1002/jmri.29412
摘要

Background Artificial intelligence shows promise in assessing knee osteoarthritis (OA) progression on MR images, but faces challenges in accuracy and interpretability. Purpose To introduce a temporal‐regional graph convolutional network (TRGCN) on MR images to study the association between knee OA progression status and network outcome. Study Type Retrospective. Population 194 OA progressors (mean age, 62 ± 9 years) and 406 controls (mean age, 61 ± 9 years) from the OA Initiative were randomly divided into training (80%) and testing (20%) cohorts. Field Strength/Sequence Sagittal 2D IW‐TSE‐FS (IW) and 3D‐DESS‐WE (DESS) at 3T. Assessment Anatomical subregions of cartilage, subchondral bone, meniscus, and the infrapatellar fat pad at baseline, 12‐month, and 24‐month were automatically segmented and served as inputs to form compartment‐based graphs for a TRGCN model, which containing both regional and temporal information. The performance of models based on (i) clinical variables alone, (ii) radiologist score alone, (iii) combined features (containing i and ii), (iv) composite TRGCN (combining TRGCN, i and ii), (v) radiomics features, (vi) convolutional neural network based on Densenet‐169 were compared. Statistical Tests DeLong test was performed to compare the areas under the ROC curve (AUC) of all models. Additionally, interpretability analysis was done to evaluate the contributions of individual regions. A P value <0.05 was considered significant. Results The composite TRGCN outperformed all other models with AUCs of 0.841 (DESS) and 0.856 (IW) in the testing cohort (all P < 0.05). Interpretability analysis highlighted cartilage's importance over other structures (42%–45%), tibiofemoral joint's (TFJ) dominance over patellofemoral joint (PFJ) (58%–67% vs. 12%–37%), and importance scores changes in compartments over time (TFJ vs. PFJ: baseline: 44% vs. 43%, 12‐month: 52% vs. 39%, 24‐month: 31% vs. 48%). Data Conclusion The composite TRGCN, capturing temporal and regional information, demonstrated superior discriminative ability compared with other methods, providing interpretable insights for identifying knee OA progression. Level of Evidence 4. Technical Efficacy Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小周完成签到 ,获得积分10
刚刚
云氲完成签到 ,获得积分10
刚刚
大模型应助saltedfishess采纳,获得10
刚刚
王海波发布了新的文献求助10
2秒前
卡布叻发布了新的文献求助10
2秒前
可爱的函函应助momo采纳,获得10
2秒前
可爱的函函应助饱满冥茗采纳,获得10
3秒前
3秒前
科研小迷糊完成签到,获得积分10
4秒前
天空发布了新的文献求助10
5秒前
彭于晏应助称心誉采纳,获得10
5秒前
56发布了新的文献求助10
5秒前
香蕉觅云应助cc采纳,获得10
6秒前
7秒前
汉堡包应助淳于寻冬采纳,获得10
7秒前
8秒前
8秒前
9秒前
大个应助bofu采纳,获得10
10秒前
10秒前
10秒前
围着那只小兔转完成签到 ,获得积分10
10秒前
11秒前
hsxg完成签到,获得积分20
11秒前
taoyitao完成签到,获得积分10
11秒前
马桶盖盖子完成签到 ,获得积分10
12秒前
12秒前
研究生发布了新的文献求助10
12秒前
pcx完成签到,获得积分10
12秒前
12秒前
hanzhipad应助jackie采纳,获得20
13秒前
枫叶完成签到,获得积分0
13秒前
Niko发布了新的文献求助10
13秒前
yuhang zhu发布了新的文献求助80
13秒前
消失中的我应助爱莉希雅采纳,获得10
14秒前
卡布叻完成签到,获得积分10
14秒前
weifengli发布了新的文献求助10
14秒前
14秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838141
求助须知:如何正确求助?哪些是违规求助? 3380447
关于积分的说明 10514320
捐赠科研通 3100011
什么是DOI,文献DOI怎么找? 1707291
邀请新用户注册赠送积分活动 821593
科研通“疑难数据库(出版商)”最低求助积分说明 772797