明胶
伤口愈合
丁香酚
聚氨酯
耐火材料(行星科学)
血管生成
化学
生物医学工程
医学
材料科学
外科
复合材料
有机化学
癌症研究
作者
Zhengzhe Han,Ang Li,Zichao Xue,Shibing Guan,Gang Yin,Xianyou Zheng
标识
DOI:10.1016/j.ijbiomac.2024.132619
摘要
The amelioration of refractory diabetic ulcers presents a formidable conundrum on a global scale, attributable to the elevated peril of contagion and protracted convalescence durations. Within the purlieus of this reparative epoch, the deployment of efficacious wound coverings endowed with both angiogenesis and antibacterial attributes is of paramount significance. Hydrogel wound dressings are distinguished by their elevated biocompatibility, adhesive tenacity, and innate regenerative capacity. Eugenol, a substance distilled from the blossoms of the lilac, serves as a precursor to metformin and is known to impede the genesis of reactive oxygen species. Although its antibacterial effects have been extensively chronicled, the angiogenic ramifications of eugenol within the context of wound remediation remain under-investigated. This research aimed to evaluate the effectiveness of eugenol-infused hydrogel as a wound dressing material. In this context, polyurethane gelatin (PG) was combined with eugenol at concentrations of 0.5% and 1%, creating PG-eugenol hydrogel mixtures with specific mass ratios for both in vivo and in vitro assessments. The in vivo studies indicated that hydrogels infused with eugenol expedited diabetic wound healing by fostering angiogenesis. Enhanced healing was noted, attributed to improved antibacterial and angiogenic properties, increased cell proliferation, tissue regeneration, and re-epithelialization. The in vitro analyses revealed that eugenol-enriched hydrogels stimulated the growth of fibroblasts (HFF-1) and human umbilical vein endothelial cells (HUVECs) and exhibited antibacterial characteristics. This investigation confirms the potential of eugenol-laden hydrogels in effectively treating diabetic wound defects.
科研通智能强力驱动
Strongly Powered by AbleSci AI