Cross-Domain Few-Shot Hyperspectral Image Classification With Cross-Modal Alignment and Supervised Contrastive Learning

高光谱成像 人工智能 计算机科学 情态动词 模式识别(心理学) 上下文图像分类 领域(数学分析) 图像(数学) 计算机视觉 遥感 数学 地质学 材料科学 数学分析 高分子化学
作者
Zhaokui Li,Chenyang Zhang,Yan Wang,Wei Li,Qian Du,Zhuoqun Fang,Yushi Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-19 被引量:6
标识
DOI:10.1109/tgrs.2024.3407201
摘要

Recently, metric-based few-shot learning (FSL) methods have achieved good performance in hyperspectral image (HSI) classification. However, existing methods suffer from two problems: over-reliance on image modality information leads to inaccurate prototype representation, where a prototype refers to the centroid of each class in the dataset, and the impact of redundant and noisy pixels on model discriminability is rarely considered. These problems result in insufficient discriminability of the model for the target domain. To address the above issues, we propose a cross-domain few-shot HSI classification framework with cross-modal alignment and supervised contrastive learning (CDFS-CASCL). It is well known that human visual learning greatly benefits from the input of various modal information such as vision, language and video. Inspired by the way humans abstract image class concepts in language form and understand the essence of classes, we perform cross-modal alignment (CA) between similar image and text prototypes, and use abstract text semantics to guide the model to learn semantic related features with good generalization ability in images, so as to improve the accuracy of image prototypes representation of the prototypes. In addition, through supervised contrastive learning (SCL) based on neighborhood pixel mask in the target domain, the enhanced sample features belonging to the same class are closer, while the enhanced sample features belonging to different classes are pulled further, enabling the model to learn mask-robust discriminative feature representations, suppressing the negative impact of redundant and noisy pixels, and improving the model's discriminability. The experimental results demonstrate the superiority of the proposed CDFS-CASCL. The code is available at https://github.com/Li-ZK/CDFS-CASCL-2024.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
选择性哑巴完成签到 ,获得积分10
刚刚
tommy完成签到,获得积分10
1秒前
1秒前
英俊的铭应助反方向的钟采纳,获得10
1秒前
脑洞疼应助Grace采纳,获得10
1秒前
这次会赢吗完成签到,获得积分10
2秒前
3秒前
yar应助你好采纳,获得10
3秒前
彩色青亦完成签到,获得积分10
4秒前
月儿发布了新的文献求助10
5秒前
5秒前
5秒前
Matberry完成签到 ,获得积分10
5秒前
雨田发布了新的文献求助10
5秒前
6秒前
51新月发布了新的文献求助10
6秒前
coffee333发布了新的文献求助10
6秒前
miaomiao完成签到,获得积分10
6秒前
7秒前
zzz完成签到,获得积分10
7秒前
小橙子应助在不在采纳,获得30
8秒前
bkagyin应助123zsy采纳,获得10
8秒前
genius_yue发布了新的文献求助20
8秒前
JamesPei应助小高飞飞飞采纳,获得10
8秒前
8秒前
9秒前
失眠星星发布了新的文献求助10
10秒前
汉堡包应助健康的涔采纳,获得20
10秒前
10秒前
所所应助典雅访旋采纳,获得10
11秒前
LalaLeibby发布了新的文献求助10
11秒前
完美世界应助未央采纳,获得10
11秒前
加减乘除发布了新的文献求助10
11秒前
11秒前
dudu完成签到,获得积分10
11秒前
AstragalosideIV8完成签到,获得积分20
12秒前
云雨完成签到 ,获得积分10
12秒前
505关闭了505文献求助
13秒前
海风发布了新的文献求助10
14秒前
ruby发布了新的文献求助10
14秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4120154
求助须知:如何正确求助?哪些是违规求助? 3658578
关于积分的说明 11581389
捐赠科研通 3360181
什么是DOI,文献DOI怎么找? 1846199
邀请新用户注册赠送积分活动 911112
科研通“疑难数据库(出版商)”最低求助积分说明 827310