Optimized Dissolved Oxygen Prediction Using Genetic Algorithm and Bagging Ensemble Learning for Smart Fish Farm

水产养殖 机器学习 人工智能 计算机科学 梯度升压 水质 遗传算法 均方误差 遗传程序设计 随机森林 农业 数据挖掘 算法 数学 渔业 统计 生态学 生物
作者
Prince Waqas Khan,Yung-Cheol Byun
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (13): 15153-15164 被引量:2
标识
DOI:10.1109/jsen.2023.3278719
摘要

The field of aquaculture is one of the numerous scientific disciplines that benefit greatly from machine learning (ML). The amount of dissolved oxygen (DO), an important indicator of water quality in sustainable fish farming, affects the yield of aquatic production. It is essential to make DO projections in fishing ponds to carry out the process of artificial aeration. We present DO forecasts utilizing time series analysis based on data obtained from Hanwha Aqua Planet Jeju, located in South Korea. This information could form the basis of a data foundation for an early detection system and improved aquaculture farm management. This research presents a unique genetic algorithm (GA) called GA-based XGBoost, CatBoost, and extra tree (GA-XGCBXT) bagging ensemble model based on GAs. This model is built on extreme gradient boosting (XGBoost), CatBoost (CB), and extra trees (XTs). To select the most outstanding features, various methodologies that exhibit a strong association with the primary data were applied. The performance of the proposed model was evaluated by comparing it to actual sensor data that had been observed, both in the training and validation sets. The precise evaluation accuracy of the anticipated results of the recommended GA-XGCBXT model was determined using various performance indices. By utilizing the strategy we suggested, we acquired a root mean square error of 0.310. Our objective is to enhance the ML model for aquaculture so that academics and practitioners can employ applications for smart fish farming with complete reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
加油少年完成签到,获得积分10
1秒前
健壮的思枫完成签到,获得积分10
1秒前
setid完成签到 ,获得积分10
2秒前
3秒前
9Songs发布了新的文献求助10
3秒前
下雨天完成签到,获得积分10
4秒前
keyan完成签到 ,获得积分10
5秒前
Jerry完成签到 ,获得积分10
6秒前
云ch完成签到,获得积分10
6秒前
笨笨的数据线完成签到 ,获得积分10
6秒前
7秒前
阿莴鹅完成签到,获得积分10
8秒前
机智大有完成签到,获得积分10
8秒前
风秋杨完成签到 ,获得积分0
9秒前
从容鞋子完成签到,获得积分10
9秒前
天真酒窝完成签到,获得积分10
9秒前
Roger完成签到,获得积分10
10秒前
请问发布了新的文献求助10
10秒前
ljssll完成签到,获得积分10
10秒前
zr完成签到,获得积分10
11秒前
qqqqqqq77完成签到 ,获得积分10
12秒前
丘比特应助愤怒的树叶采纳,获得10
12秒前
13秒前
爱听歌素发布了新的文献求助10
13秒前
研友_Z3342Z完成签到,获得积分10
15秒前
wwww完成签到,获得积分10
15秒前
16秒前
刘zx完成签到,获得积分10
17秒前
17秒前
贱小贱完成签到,获得积分10
18秒前
18秒前
NeuroWhite完成签到,获得积分10
19秒前
平常的雁凡完成签到,获得积分20
19秒前
21秒前
22秒前
南国完成签到,获得积分10
22秒前
高大的战斗机完成签到,获得积分10
23秒前
打打应助Swait采纳,获得10
24秒前
24秒前
逸风望完成签到,获得积分10
24秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819996
求助须知:如何正确求助?哪些是违规求助? 3362921
关于积分的说明 10419317
捐赠科研通 3081243
什么是DOI,文献DOI怎么找? 1695047
邀请新用户注册赠送积分活动 814855
科研通“疑难数据库(出版商)”最低求助积分说明 768545