An efficient intrusion detection method using federated transfer learning and support vector machine with privacy-preserving

计算机科学 入侵检测系统 支持向量机 机器学习 前提 人工智能 学习迁移 数据挖掘 钥匙(锁) 网络安全 数据共享 信息隐私 计算机安全 哲学 病理 医学 语言学 替代医学
作者
Weifei Wu,Yanhui Zhang
出处
期刊:Intelligent Data Analysis [IOS Press]
卷期号:27 (4): 1121-1141 被引量:4
标识
DOI:10.3233/ida-226617
摘要

In recent decades, network security for organizations and individuals has become more and more important, and intrusion detection systems play a key role in protecting network security. To improve intrusion detection effect, different machine learning techniques have been widely applied and achieved exciting results. However, the premise that these methods achieve reliable results is that there are enough available and well-labeled training data, training and test data being from the same distribution. In real life, the limited label data generated by a single organization is not enough to train a reliable learning model, and the distribution of data collected by different organizations is difficult to be the same. In addition, various organizations protect their privacy and data security through data islands. Therefore, this paper proposes an efficient intrusion detection method using transfer learning and support vector machine with privacy-preserving (FETLSVMP). FETLSVMP performs aggregation of data distributed in various organizations through federated learning, then utilizes transfer learning and support vector machines build personalized models for each organization. Specifically, FETLSVMP first builds a transfer support vector machine model to solve the problem of data distribution differences among various organizations; then, under the mechanism of federated learning, the model is used for learning without sharing training data on each organization to protect data privacy; finally, the intrusion detection model is obtained with protecting the privacy of data. Experiments are carried out on NSL-KDD, KDD CUP99 and ISCX2012, the experimental results verify that the proposed method can achieve better results of detection and robust performance, especially for small samples and emerging intrusion behaviors, and have the ability to protect data privacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
研友_VZG7GZ应助cookangdavid采纳,获得10
1秒前
狂野飞槐发布了新的文献求助10
1秒前
所所应助恋雅颖月采纳,获得10
1秒前
wjx关闭了wjx文献求助
1秒前
哈皮发布了新的文献求助10
2秒前
2秒前
xiaozhao完成签到,获得积分10
2秒前
高贵的小天鹅完成签到,获得积分10
2秒前
2秒前
简单面包发布了新的文献求助10
2秒前
Akim应助zenoalter采纳,获得10
3秒前
3秒前
4秒前
shuke发布了新的文献求助10
5秒前
QI发布了新的文献求助10
5秒前
深情安青应助卡皮巴丘采纳,获得10
5秒前
狂野筝发布了新的文献求助30
5秒前
6秒前
aniu发布了新的文献求助10
6秒前
lizhiqian2024发布了新的文献求助10
7秒前
Akio完成签到,获得积分20
7秒前
小吴没烦恼完成签到 ,获得积分10
7秒前
wjx关闭了wjx文献求助
8秒前
进取拼搏发布了新的文献求助10
8秒前
9秒前
张天翔发布了新的文献求助10
9秒前
9秒前
简单面包完成签到,获得积分10
9秒前
9秒前
科研通AI5应助qcx采纳,获得10
10秒前
zhou发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
11秒前
bzlish发布了新的文献求助10
12秒前
wjx关闭了wjx文献求助
12秒前
BING完成签到 ,获得积分10
12秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Mechanochemistry of Solid Surfaces 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806719
求助须知:如何正确求助?哪些是违规求助? 3351444
关于积分的说明 10354221
捐赠科研通 3067286
什么是DOI,文献DOI怎么找? 1684457
邀请新用户注册赠送积分活动 809674
科研通“疑难数据库(出版商)”最低求助积分说明 765568