清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Neural Network Model-Based Reinforcement Learning Control for AUV 3-D Path Following

强化学习 人工神经网络 计算机科学 钢筋 控制(管理) 路径(计算) 人工智能 工程类 计算机网络 结构工程
作者
Dongfang Ma,Xi Chen,Weihao Ma,Huarong Zheng,Fengzhong Qu
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (1): 893-904 被引量:29
标识
DOI:10.1109/tiv.2023.3282681
摘要

Autonomous underwater vehicles (AUVs) have become important tools in the ocean exploration and have drawn considerable attention. Precise control for AUVs is the prerequisite to effectively execute underwater tasks. However, the classical control methods such as model predictive control (MPC) rely heavily on the dynamics model of the controlled system which is difficult to obtain for AUVs. To address this issue, a new reinforcement learning (RL) framework for AUV path-following control is proposed in this article. Specifically, we propose a novel actor-model-critic (AMC) architecture integrating a neural network model with the traditional actor-critic architecture. The neural network model is designed to learn the state transition function to explore the spatio-temporal change patterns of the AUV as well as the surrounding environment. Based on the AMC architecture, a RL-based controller agent named ModelPPO is constructed to control the AUV. With the required sailing speed achieved by a traditional proportional-integral (PI) controller, ModelPPO can control the rudder and elevator fins so that the AUV follows the desired path. Finally, a simulation platform is built to evaluate the performance of the proposed method that is compared with MPC and other RL-based methods. The obtained results demonstrate that the proposed method can achieve better performance than other methods, which demonstrate the great potential of the advanced artificial intelligence methods in solving the traditional motion control problems for intelligent vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白菜完成签到 ,获得积分10
11秒前
孙哈哈完成签到 ,获得积分10
28秒前
Cheney完成签到 ,获得积分10
38秒前
fev123完成签到,获得积分10
1分钟前
Alex-Song完成签到 ,获得积分0
2分钟前
巴达天使完成签到,获得积分10
3分钟前
charih完成签到 ,获得积分10
3分钟前
积极的中蓝完成签到 ,获得积分10
3分钟前
陶军辉完成签到 ,获得积分10
3分钟前
许之北完成签到 ,获得积分10
5分钟前
5分钟前
奔跑的蒲公英完成签到,获得积分10
5分钟前
Jayzie完成签到 ,获得积分10
6分钟前
widesky777完成签到 ,获得积分0
6分钟前
不秃燃的小老弟完成签到 ,获得积分10
7分钟前
7分钟前
冬去春来完成签到 ,获得积分10
8分钟前
8分钟前
asdasd发布了新的文献求助10
8分钟前
隐形曼青应助asdasd采纳,获得10
8分钟前
无花果应助Demi_Ming采纳,获得10
8分钟前
9分钟前
Demi_Ming发布了新的文献求助10
9分钟前
Akim应助陶醉的手套采纳,获得10
9分钟前
宇文非笑完成签到 ,获得积分0
9分钟前
juan完成签到 ,获得积分10
9分钟前
MchemG应助科研通管家采纳,获得10
9分钟前
科研通AI5应助陶醉的手套采纳,获得10
10分钟前
10分钟前
万能图书馆应助张立人采纳,获得10
10分钟前
10分钟前
10分钟前
张立人发布了新的文献求助10
10分钟前
大英留子千早爱音完成签到,获得积分10
11分钟前
萝卜猪完成签到,获得积分10
11分钟前
MchemG应助科研通管家采纳,获得10
11分钟前
MchemG应助科研通管家采纳,获得20
11分钟前
12分钟前
远远gby发布了新的文献求助10
12分钟前
luha完成签到,获得积分10
12分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804223
求助须知:如何正确求助?哪些是违规求助? 3349026
关于积分的说明 10341124
捐赠科研通 3065185
什么是DOI,文献DOI怎么找? 1682960
邀请新用户注册赠送积分活动 808571
科研通“疑难数据库(出版商)”最低求助积分说明 764600