A spatial and temporal signal fusion based intelligent event recognition method for buried fiber distributed sensing system

计算机科学 信号(编程语言) 光时域反射计 人工智能 时域 反射计 点云 模式识别(心理学) 条件随机场 事件(粒子物理) 计算机视觉 实时计算 光纤 光纤传感器 物理 渐变折射率纤维 电信 程序设计语言 量子力学
作者
Yinghuan Li,Xiaoping Zeng,Yi Shi
出处
期刊:Optics and Laser Technology [Elsevier BV]
卷期号:166: 109658-109658 被引量:12
标识
DOI:10.1016/j.optlastec.2023.109658
摘要

Due to the characteristics of high sensitivity, fast response speed and multi-point monitoring, Phase-sensitive optical time-domain reflectometry (Φ-OTDR) has attracted attention in the field of perimeter security. However, the intrusion signals are susceptible to interference by ambient signals and difficult to be recognized. In the field of the vibration event recognition of Φ-OTDR system, the deep-learning based methods achieve great recognition ability. However, the previous works are mostly built on single signal source like temporal signal and may not completely adapt to different environment. In this work, a novel phenomenon is reported that a specific variation pattern of light intensity, which is related to the type of vibration source, is hided in the backscattering traces in spatial domain. Inspired by this, a lightweight model and data composition method is proposed to fuse spatial information with temporal correlation information based on end-to-end CNN-LSTM combined model and bicubic scaling. The experiment is conducted on a portable computer (a Nvidia GPU RTX 2080 with 2944 compute unified device architecture cores) with 8 event types and shows that this method can achieve 95.56% validation accuracy through less than 6 min training. Compared with previous method trained by single image structure signal, this lightweight work can achieve higher validation accuracy faster.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忘川完成签到,获得积分10
2秒前
3秒前
3秒前
科研通AI5应助安陌煜采纳,获得10
3秒前
4秒前
白白SAMA123完成签到,获得积分10
5秒前
喜悦的皮卡丘完成签到,获得积分10
6秒前
都兰发布了新的文献求助10
7秒前
7秒前
zyzraylene发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
whaaaley发布了新的文献求助10
10秒前
xx完成签到 ,获得积分10
11秒前
jenningseastera应助企鹅乌云采纳,获得50
11秒前
煤炭不甜发布了新的文献求助10
14秒前
JamesPei应助惜染采纳,获得10
15秒前
15秒前
搜集达人应助wangqing采纳,获得10
15秒前
16秒前
Orange应助刻苦大叔采纳,获得10
16秒前
Kvolu29完成签到,获得积分10
17秒前
NexusExplorer应助橘子大王采纳,获得10
18秒前
qqq发布了新的文献求助10
18秒前
科研通AI5应助南巷采纳,获得10
19秒前
NexusExplorer应助zzzyc采纳,获得10
21秒前
苏打完成签到,获得积分10
23秒前
23秒前
春山完成签到,获得积分10
24秒前
天韧关注了科研通微信公众号
24秒前
惜染完成签到,获得积分20
24秒前
Yi关注了科研通微信公众号
24秒前
天天快乐应助坦率抽屉采纳,获得10
25秒前
26秒前
wangqing发布了新的文献求助10
27秒前
28秒前
思源应助lichun410932采纳,获得10
28秒前
28秒前
30秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Spatio-Temporal Stock Prediction Method Based on End-to-End Learning with Attention Mechanism 200
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
The phrasal lexicon 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836233
求助须知:如何正确求助?哪些是违规求助? 3378583
关于积分的说明 10504968
捐赠科研通 3098204
什么是DOI,文献DOI怎么找? 1706318
邀请新用户注册赠送积分活动 820958
科研通“疑难数据库(出版商)”最低求助积分说明 772349