Exploring pathological signatures for predicting the recurrence of early-stage hepatocellular carcinoma based on deep learning

医学 队列 肝细胞癌 病态的 肿瘤科 免疫组织化学 内科学 T级 阶段(地层学) 肿瘤微环境 TNM分期系统 转移 胃肠病学 癌症 病理 生物 肿瘤分期 古生物学
作者
Wei‐Feng Qu,Meng‐Xin Tian,Jingtao Qiu,Yucheng Guo,Chenyang Tao,Wei‐Ren Liu,Zheng Tang,Kun Qian,Zhi-Xun Wang,Xiaoyu Li,Wei-An Hu,Jian Zhou,Jia Fan,Hao Zou,Yingyong Hou,Ying‐Hong Shi
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:12: 968202-968202 被引量:22
标识
DOI:10.3389/fonc.2022.968202
摘要

Background Postoperative recurrence impedes the curability of early-stage hepatocellular carcinoma (E-HCC). We aimed to establish a novel recurrence-related pathological prognosticator with artificial intelligence, and investigate the relationship between pathological features and the local immunological microenvironment. Methods A total of 576 whole-slide images (WSIs) were collected from 547 patients with E-HCC in the Zhongshan cohort, which was randomly divided into a training cohort and a validation cohort. The external validation cohort comprised 147 Tumor Node Metastasis (TNM) stage I patients from The Cancer Genome Atlas (TCGA) database. Six types of HCC tissues were identified by a weakly supervised convolutional neural network. A recurrence-related histological score (HS) was constructed and validated. The correlation between immune microenvironment and HS was evaluated through extensive immunohistochemical data. Results The overall classification accuracy of HCC tissues was 94.17%. The C-indexes of HS in the training, validation and TCGA cohorts were 0.804, 0.739 and 0.708, respectively. Multivariate analysis showed that the HS (HR= 4.05, 95% CI: 3.40-4.84) was an independent predictor for recurrence-free survival. Patients in HS high-risk group had elevated preoperative alpha-fetoprotein levels, poorer tumor differentiation and a higher proportion of microvascular invasion. The immunohistochemistry data linked the HS to local immune cell infiltration. HS was positively correlated with the expression level of peritumoral CD14 + cells ( p = 0.013), and negatively with the intratumoral CD8 + cells ( p < 0.001). Conclusions The study established a novel histological score that predicted short-term and long-term recurrence for E-HCCs using deep learning, which could facilitate clinical decision making in recurrence prediction and management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小静完成签到 ,获得积分10
刚刚
1秒前
xiangshu完成签到,获得积分10
2秒前
武雨寒发布了新的文献求助10
6秒前
熊雅完成签到,获得积分10
6秒前
大气小天鹅完成签到 ,获得积分10
8秒前
Cell完成签到 ,获得积分10
8秒前
Yonckham完成签到,获得积分10
9秒前
kelien1205完成签到 ,获得积分10
9秒前
mayhem发布了新的文献求助30
15秒前
sciforce完成签到,获得积分10
17秒前
我本人lrx完成签到 ,获得积分10
17秒前
卞卞完成签到,获得积分10
19秒前
SDS完成签到 ,获得积分10
21秒前
23秒前
mayhem完成签到,获得积分10
28秒前
YYYYYY完成签到,获得积分10
30秒前
磊磊完成签到,获得积分10
31秒前
忒寒碜完成签到,获得积分10
42秒前
薄雪草完成签到,获得积分10
42秒前
shawn完成签到 ,获得积分10
43秒前
airtermis完成签到 ,获得积分10
43秒前
科研通AI5应助科研通管家采纳,获得10
45秒前
科研通AI5应助科研通管家采纳,获得10
45秒前
烟花应助科研通管家采纳,获得10
45秒前
烟花应助科研通管家采纳,获得10
45秒前
迅速千愁完成签到 ,获得积分10
49秒前
111完成签到,获得积分10
49秒前
herpes完成签到 ,获得积分0
49秒前
冷傲的擎汉完成签到 ,获得积分10
53秒前
雨田完成签到 ,获得积分10
53秒前
淡定的思松完成签到 ,获得积分10
57秒前
恋风阁完成签到 ,获得积分10
1分钟前
2025顺顺利利完成签到 ,获得积分10
1分钟前
1分钟前
零玖完成签到 ,获得积分10
1分钟前
ommphey完成签到 ,获得积分10
1分钟前
qianci2009完成签到,获得积分10
1分钟前
爱玛爱玛完成签到 ,获得积分10
1分钟前
Yanzhi完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5174834
求助须知:如何正确求助?哪些是违规求助? 4364200
关于积分的说明 13586280
捐赠科研通 4213063
什么是DOI,文献DOI怎么找? 2310934
邀请新用户注册赠送积分活动 1309889
关于科研通互助平台的介绍 1257694