清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A dynamic large-scale multiple attribute group decision-making method with probabilistic linguistic term sets based on trust relationship and opinion correlation

概率逻辑 计算机科学 骨料(复合) 群体决策 期限(时间) 聚类分析 集合(抽象数据类型) 数据挖掘 比例(比率) 动态决策 层次聚类 机器学习 人工智能 物理 法学 程序设计语言 材料科学 复合材料 量子力学 政治学
作者
Fei Teng,Chuantao Du,Mengjiao Shen,Пэйдэ Лю
出处
期刊:Information Sciences [Elsevier BV]
卷期号:612: 257-295 被引量:30
标识
DOI:10.1016/j.ins.2022.07.092
摘要

Dynamic large-scale multiple attribute group decision making (DLMAGDM) is ubiquitous in many areas of the real world. It is composed of large numbers of decision makers, several continuous periods, alternative set and attribute set changed with time. Given the characteristics implicited in decision-making elements and the advantages of probabilistic linguistic term sets (PLTSs) in modelling uncertainty and complexity of decision makers’ subjective opinions, this paper constructs a probabilistic linguistic DLMAGDM method. First of all, a dynamic weight determination model based on trust relationships and evidential conflicts between decision makers is proposed to obtain current dynamic weights of decision makers. Then, a comprehensive hierarchical clustering method that divides large numbers of decision makers into several subgroups is constructed based on three clustering constrains. Moreover, some probabilistic linguistic extended evidential power aggregation operators are proposed to aggregate PLTSs. These operators can appropriately handle the extreme PLTSs and fully consider the role of incomplete probabilistic distributions in PLTSs. In addition, a dynamic decision-making method based on PROMETHEE is developed to determine the final priority order of alternatives according to preferences between alternatives over several periods. Lastly, a case study for supply chain finance risk assessment for several firms in Chinese household appliance industry is utilized to illustrate the practicality and effectiveness of the probabilistic linguistic DLMAGDM method. Furthermore, the comparative analysis with some other existing methods and the sensitivity analysis are made to verify its advantages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
19秒前
xkhxh完成签到 ,获得积分10
31秒前
Aha完成签到 ,获得积分10
33秒前
平常的三问完成签到 ,获得积分10
39秒前
40秒前
41秒前
xiangrikui发布了新的文献求助10
45秒前
乔杰完成签到 ,获得积分10
47秒前
肝胆外科医生完成签到,获得积分10
49秒前
Leif完成签到 ,获得积分0
53秒前
酷酷小子完成签到 ,获得积分10
56秒前
105完成签到 ,获得积分10
1分钟前
yw完成签到,获得积分10
1分钟前
缓慢诗云完成签到 ,获得积分10
1分钟前
任伟超完成签到,获得积分10
1分钟前
开放又亦完成签到 ,获得积分0
1分钟前
sun完成签到,获得积分10
1分钟前
Air完成签到 ,获得积分10
1分钟前
从容芮应助cadcae采纳,获得200
1分钟前
junio完成签到 ,获得积分10
1分钟前
瓦罐完成签到 ,获得积分10
1分钟前
1分钟前
cdercder应助科研通管家采纳,获得20
1分钟前
1分钟前
1分钟前
小杨完成签到 ,获得积分10
1分钟前
monk完成签到 ,获得积分10
1分钟前
苏木发布了新的文献求助10
1分钟前
sherry221完成签到,获得积分10
1分钟前
荣浩宇完成签到 ,获得积分10
1分钟前
等于几都行完成签到 ,获得积分10
1分钟前
zhao完成签到,获得积分10
1分钟前
mojito完成签到 ,获得积分10
2分钟前
闪闪的谷梦完成签到 ,获得积分10
2分钟前
2分钟前
Bryan发布了新的文献求助10
2分钟前
晶晶完成签到,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833883
求助须知:如何正确求助?哪些是违规求助? 3376330
关于积分的说明 10492623
捐赠科研通 3095843
什么是DOI,文献DOI怎么找? 1704723
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859